
Using GPT to build a Project Management assistant for Jira
environments

Joel Garcia-Escribano1, Arkaitz Carbajo2 a, Mikel Egaña Aranguren3 b, and Unai Lopez-Novoa3 c

1Accenture, Bilbao, Spain
2LKS Next GobTech, Bilbao, Spain

3University of the Basque Country UPV/EHU, Bilbao, Spain
joel.b.garcia@accenture.com, arkaitz.carbajo@gobtech.lksnext.com, {mikel.egana, unai.lopez}@ehu.eus

Keywords: Intelligent Decision Making, LLM, Jira, GPT, Prompt Engineering, Project Management.

Abstract: In the domain of Project Management, the sheer volume of data is a challenge that project managers continu-
ally have to deal with. Effectively steering projects from inception to completion requires handling of diverse
information streams, including timelines, budgetary considerations, and task dependencies. To navigate this
data-driven landscape with precision and agility, project managers must rely on efficient and sophisticated
tools. These tools have become essential, as they enable project managers to streamline communication, op-
timize resource allocation, and make informed decisions in real-time. However, many of these tools have
steep learning curves and require using complex programming languages to retrieve the exact data that project
managers need. In this work we present JiraGPT Next, a software that uses the GPT Large Language Model to
ease the process by which project managers deal with large amounts of data. It is conceived as an add-on for
Jira, one of the most popular Project Management tools, and provides a natural language interface to retrieve
information. This work presents the design decisions behind JiraGPT Next and an evaluation of the accuracy
of GPT in this context, including the effects of providing different prompts to complete a particular task.

1 Introduction

In the evolving landscape of Project Management, the
confluence of artificial intelligence and task manage-
ment platforms has become a focal point for driving
efficiency and enhancing decision-making processes
(Auth et al., 2021; Taboada et al., 2023). Jira1, devel-
oped by Atlassian, stands out as an industry-standard
tool that enables teams to plan, track, and manage
agile software development projects. However, de-
spite its comprehensive feature set, Jira users often
encounter challenges in navigating complex work-
flows, managing growing backlogs, and maintaining
clear communication across tasks and team members.

As the velocity of software development accel-
erates and the volume of tasks within projects pro-
liferates, the need for intelligent automation within
Project Management tools becomes increasingly
paramount. The deployment of AI in this domain

a https://orcid.org/0000-0003-0904-4627
b https://orcid.org/0000-0001-8081-1839
c https://orcid.org/0000-0002-2707-8946
1https://www.atlassian.com/software/jira

has predominantly focused on predictive analytics for
project outcomes or robotic process automation for
task completion. However, these applications have
not fully leveraged the potential of AI to interact with
users in a natural and contextually relevant manner.
The advent of sophisticated language models such as
GPT (Brown et al., 2020) offers an untapped opportu-
nity to address this gap (Nuhn et al., 2022).

This paper presents JiraGPT Next, a prototype of a
GPT-based intelligent assistant for Jira environments.
The aim is to provide a natural language interface
by which managers can retrieve precise information
about their projects in a seamless manner, hiding the
complexities of Jira. Our software retrieves informa-
tion from Jira database through its API and uses Ope-
nAI’s public API to access the available GPT models.

JiraGPT Next has been developed as part of a col-
laboration with LKS Next-GobTech2, a division of
the LKS Next Group focused on providing innovative
solutions to improve the workflows of public admin-
istrations in their digital transformation. Some deci-
sions about the design and development of the soft-

2https://www.lksnext.com/

ar
X

iv
:2

50
9.

26
01

4v
1

 [
cs

.S
E

]
 3

0
Se

p
20

25

https://arxiv.org/abs/2509.26014v1

ware have been taken with the constraints of this divi-
sion in mind. Also, we want to note that, since LKS
Next is based in Spain, this prototype has been imple-
mented in Spanish. Translations to English are pro-
vided as necessary throughout this paper.

The rest of the paper is organised as follows: Sec-
tion 2 describes the context on LLMs (2.1) and Project
Management (PM) 2.2; Section 3 describes JiraGPT
Next in detail, including the integration with GPT;
Section 4 provides an evaluation of the effects of us-
ing different GPT prompts for a particular task; Sec-
tion 5 presents other tools applying AI to improve
Project Management and a comparison of them with
JiraGPT Next and finally, Section 6 covers the wrap-
ping conclusions and lies lines of future work.

2 Background

This section provides a description of Large Lan-
guage Models (LLMs), the main AI tool behind the
natural language replies in JiraGPT Next, and an
overview of Project Management, the domain of ap-
plication of this work.

2.1 LLMs

LLMs have emerged as a transformative force in the
realm of computer science, particularly in the domain
of NLP (Natural Language Processing). Leveraging
deep neural networks with millions, or even billions,
of parameters, these models have been trained on ex-
tensive corpora of text data, enabling them to capture
intricate patterns and relationships within natural lan-
guage. LLMs are capable of learning contextual rep-
resentations of words and phrases, resulting in a nu-
anced understanding of language semantics and syn-
tax.

The architecture of LLMs is predominantly based
on the transformer model (Vaswani et al., 2023).
The transformer model utilizes self-attention mech-
anisms to weigh the importance of different words
in a sentence, enabling the capture of long-range de-
pendencies and context. This architecture has proven
to be highly effective for NLP tasks, leading to its
widespread adoption in the development of LLMs.

The capabilities of LLMs have paved the way for
groundbreaking applications across various fields, in-
cluding but not limited to healthcare, finance, edu-
cation, and customer service ((Editorial), 2023). In
healthcare, for example, LLMs assist in processing
and summarizing patient records, enhancing the ef-
ficiency and accuracy of diagnostics and treatment
planning. In the realm of customer service, they

power chatbots and virtual assistants, providing quick
and contextually relevant responses to user inquiries.

In many LLMs, including GPT, a prompt acts as
the guiding instruction or query provided to the model
to elicit a specific response. Crafting a prompt care-
fully is paramount, as it shapes the context and in-
fluences the nature of the generated output. A well-
crafted prompt not only defines the task at hand but
also guides the LLM to produce meaningful and con-
textually appropriate information. Thoughtful prompt
construction is essential for harnessing the full po-
tential of LLMs, ensuring that they generate outputs
aligned with the user’s intentions and the desired ap-
plication (Shrivastava et al., 2023).

In addition, when using LLMs, a crucial parame-
ter is the temperature, which influences the random-
ness and creativity of the model’s output (Jiang et al.,
2021). The temperature parameter ranges from 0.0
to 1.0 and controls the probability distribution of the
next word in a sequence generated by the model. A
higher temperature, such as 1.0, introduces more ran-
domness, allowing for diverse and imaginative re-
sponses. Conversely, a lower temperature, like 0.5,
sharpens the focus of the model, leading to more de-
terministic and conservative outputs. Properly tuning
the temperature is critical, as it directly impacts the
balance between novelty and coherence in the gener-
ated text (Ji et al., 2023).

2.2 Project Management

Project Management tools have been an integral
part of the software engineering process since its
dawn in the 1960s and 1970s, including tools like
Microsoft Project3, which brought digitalization to
project scheduling and resource allocation.

With the advent of agile methodologies new tools
were needed in order to tackle the fine-grained, high-
volume information projects were generating. Plat-
forms like Jira, Trello4, and Asana5 emerged, empha-
sizing adaptability, real-time collaboration, and inte-
gration with other development tools. The signifi-
cance of these platforms lies not only in task track-
ing, but also in their potential to foster communica-
tion, facilitate remote work, and adapt to the evolving
needs of the software development industry. Jira has
become one of the most widely-used Project Manage-
ment tools, according to Google Trends6.

3https://www.microsoft.com/es-es/
microsoft-365/project

4https://trello.com/
5https://asana.com/
6https://labur.eus/NNJxs

3 JiraGPT Next

This section describes the design and implementa-
tion of JiraGPT Next, focusing on the user interface
and the workflow to provide answers in natural lan-
guage using GPT. Currently, it works as a web ap-
plication compatible with any modern browser. It has
been developed using Streamlit7 as the library to build
the web front-end and Python for back-end and every
other task.

JiraGPT Next works as an add-on for a Jira instal-
lation and uses Jira Query Language (JQL) to access
its database. JQL is Jira’s dedicated query language,
which allows to construct queries based on specific
criteria, such as issue types, statuses, assignees and
custom fields. It enables advanced users and devel-
opers to precisely filter and retrieve information from
the data contained in Jira. More information about
JQL is available in its official documentation8 and in
the literature (Harned, 2018).

3.1 User Interface

JiraGPT Next’s user interface is presented in Figure 1.
The interface is divided in two panels, left and central,
offering different functionalities. The central panel is
designed to be used by project managers (end users of
the application). In there, a project manager can type
a query in natural language (e.g. “How many issues
have been were closed in January 2023?”) and the an-
swer will be provided below. The panel is comprised
of the following elements:

• A list of examples as suggestions on how to type
a query.

• The text area for the user’s query.

• The option to mark the question as complex.
More about this will be described later.

• The button to submit the query.

The panel in the left hand side is aimed to be used
by developers and has been set for debugging pur-
poses. It is currently used to test and tune the results
of JiraGPT Next and, while it is visible in the current
prototype, it will be hidden in future versions. It con-
tains the following elements:

• Temperature definition. Controls the temperature
parameter of GPT, which leads to higher or lower
randomness in the responses.

• Template type.

7https://streamlit.io/
8https://www.atlassian.com/software/jira/

guides/jql

• LLM model. It shows the available LLMs to use
JiraGPT Next with.

We have defined that, in JiraGPT Next, a query
made in natural language can be one of the following
types:

• Basic: A query whose answer is a list of items,
e.g. the issues created in January 2023.

• Complex: A query whose answer goes beyond a
list of items and shall be expressed in natural lan-
guage, e.g. the number of projects with more than
7 ongoing issues.

In its current version, a user can define whether a
query is basic or complex using the appropriate toggle
in the user interface. The rationale behind this deci-
sion is to let the user have a way to control the cost
linked to the queries. More about this will be detailed
in the next section.

We show in Figure 2 a screenshot of JiraGPT Next
with the results to a sample query “How many tasks
created this month are in progress?”, which is con-
sidered a complex query. JiraGPT Next provides an
answer in natural language “Hay 1 tarea creada este
mes que está en progreso” (“There’s 1 task with status
in progress created this month”) and a listing with in-
formation about this task, including a link that opens
Jira with more information. Under this listing, the
user finds the following information:

• The JQL statement used to retrieve the informa-
tion, which in the screenshot is: status = ’En
Progreso’ AND created = startOfMonth().

• The Jira fields involved in the query.

• The cost of the query related to calls to the Ope-
nAI GPT API.

3.2 Query workflow

In general terms, JiraGPT Next takes the user’s query,
translates it to JQL, conducts some analysis and gives
an answer to the end user. This process works in three
phases, which have been depicted in Figure 3. Each
phase requires a call to OpenAI’s GPT API with a
particular prompt, which will be described in depth in
the next section. The phases of the workflow are:

• Phase 1: The query of the user is coupled with
a custom prompt and sent to GPT. GPT returns a
query in JQL format and this query is executed in
the local Jira instance.

• Phase 2: Results from the JQL query generated
in the previous phase are collected and analyzed.
The analysis retrieves the fields of the items in the
results, couples them with a custom prompt and

Figure 1: Screenshot of JiraGPT Next’s user interface.

Figure 2: Screenshot of JiraGPT Next with the results to the query “How many tasks created this month are in progress?” (In
Spanish).

are sent to GPT. From the list of fields, GPT re-
turns a subset of the fields required to construct
an answer to the user in the next phase.

• Phase 3: The GPT API is used to construct an an-
swer in natural language for the user. It requires
using a custom prompt and subset of the data ob-
tained in phase 1, guided by the field selection
conducted in phase 2.

When a query is conducted as Basic, only the first
phase of the workflow is used: JiraGPT Next gener-
ates a JQL query using the GPT API and runs it on the
Jira instance. Jira returns a list of items corresponding
to the JQL statement, and those are presented to the
user. This mode only involves Phase 1 of the program,
so it is the fastest and the least costly.

When a query is conducted as Complex (i.e. re-
quires interpretations or calculations that can not be
directly retrieved using JQL) the three phases of the
workflow are used:

1. The JQL is generated as in the Basic Mode.

2. The JQL is executed and the Jira issues are re-
ceived as a JSON file.

3. In phase 2, fields from the JSON of the issues
that are not useful for any type of question are re-
moved. Only 21 fields are maintained for each
issue.

4. The GPT API is used to retrieve the fields in the
JSON object that are strictly necessary to solve the
question. GPT responds with a list of the fields
and a new JSON is created with just those fields
for each issue. The goal of this step is to simplify
the input for the next phase.

5. In phase 3, the reduced JSON and the user’s ques-
tion are send to GPT, which elaborates an answer
in natural language. This answer is presented to
the user in the web interface.

3.3 GPT Prompts

In each phase of the workflow, a query is made to
the GPT model. This query contains a prompt which
serves as input for the model and is composed of a
template and some input data (e.g. in phase 1, the
query that the user types). This section describes the
templates used in each phase.

Phase 1 template The aim of this phase is to gen-
erate the JQL query that will be executed in Jira. To
this end, JiraGPT Next uses the following template
prompt (the numbers next to each paragraph are ref-
erences that will be used in Section 4; “GPT4” is the
name of a sample project in Jira):

1. You are an AI assistant trained on JIRA
Query Language. Your task is to translate
user requests into precise JQL queries. Re-
member, the output should only be the JQL
query itself, without any additional informa-
tion or explanations.

2. Always use the following issue status names
in Spanish and never in English: “Open”
should be “Abierto”, “In Progress” should
be “En Progreso”, “Resolved” should
be “Resuelto”, “Approved” should be
“Aprobada”, “Delivered” should be “Entre-
gado”, “Reopened” should be “Reabierto”,
“Closed” should be “Cerrado”.

3. Please note: If a project name is not specified
in the user’s request, do not invent or assume
a project name. Simply omit the project name
from the generated JQL query. For example,
given the user’s query “Muestra las inciden-
cias en progreso en GPT4”, you should re-
turn “status = “En Progreso” AND project
= GPT4”’

4. Another example: given the user’s query
“¿Cuáles son las incidencias de máxima pri-
oridad asignadas a joel.garcia?” you should
return “assignee = “joel.garcia” AND pri-
ority = “Highest””.

In this phase, if the query of the user was
“¿Cuántas personas tienen asignadas tareas en el
proyecto GPT4?” (“How many employees have tasks
assigned in the project GPT4?”), GPT would return
a JQL statement like assignee is not empty AND
project = GPT4.

Phase 2 template In this phase, GPT is asked to
select the JSON fields that are required to solve the
query, among all of those returned by the JQL query.
The following template prompt is used:

Given the user’s query, please respond ONLY
with the specific fields from the JIRA API’s
JSON response, separated by commas, that
are necessary to fulfill the user’s request.
Each field should be separated by a comma
with no additional explanation or text. For ex-
ample, if the user’s request required the “as-
signee”, “project”, and “time” fields, you
would respond: “assignee, project, time”.
Now, please analyze the following user query
If the user query was “¿Cuántas personas tienen

asignadas tareas en el proyecto GPT4” (“How
many employees have tasks assigned in the project
GPT4?”), after the first phase, this phase would return
Necessary JSON fields: [assignee].

Figure 3: Phases of the JiraGPT Next internal process.

Phase 3 template In this phase, GPT is asked to
provide an answer in natural language. Appart from
the template prompt, the user’s query in natural lan-
guage and the reduced JSON is provided. The tem-
plate prompt is:

You are part of an application that interfaces
with JIRA. The program is as follows: A user’s
natural language query asking about issues in
JIRA is translated into Jira Query Language
using GPT API. The JQL is then executed, and
the resulting issues are collected in a JSON.
You are given a JSON of the issues and the
user’s query and you must answer with a re-
sponse to the user’s query.

After this phase, if the user query was “¿Cuántas
personas tienen asignadas tareas en el proyecto
GPT4” (“How many employees have tasks
assigned in the project GPT4?”), the answer
would be A partir del JSON de incidencias
proporcionado, se puede determinar el
número de personas diferentes a las que
se les ha asignado una incidencia en
GPT4. En este caso son 3 personas. (“From
the issues JSON provided, the number of different
people who have been assigned an issue in GPT4 can
be determined. In this case there are 3 people”).

4 Evaluation

This section presents an evaluation of the accuracy of
one of the prompts used in JiraGPT Next. Although
the prompts in use have been described in section 3.3,
this section aims to give a detailed overview of the
different options that have been considered during the
design of the prompts and their impact on the effec-
tiveness of the program.

We want to note that this section presents an eval-
uation solely of the prompt used in the first phase of
the application for different reasons: firstly, the JQL
generation stage is crucial for the correct functioning
of JiraGPT Next and it can be evaluated accurately in
an automatic way. Secondly, and with regards to the
prompt of the second phase, even if it suggests more
fields than the strictly necessary to create a query, Ji-
raGPT Next would create correct results and the an-
swer for the end user would not be affected. And
thirdly, the assessment of the third phase is left out
because, given that the answer is generated in natural
language, its evaluation could be subjective.

For this evaluation, we prepared a set of questions
that a project manager would type into JiraGPT Next.
We compute the accuracy of a particular prompt by
checking if the answer provided by GPT is right or
not: for example, if a query asks for Jira issues in
a particular period, we check JiraGPT Next’s reply
with the data in Jira. If it returns exactly the expected
issues, the answer is marked as correct. If it does

not return every issue expected by the user or returns
some issues that should not be returned, the answer is
marked as incorrect. We do not evaluate whether the
generated JQL query matches an already established
one because GPT can generate a large number of JQL
statements that are correct but not considered by us.
As a final note, these tests have used GPT v3.5 and
were run between September and October 2023.

4.1 Environmental setup

We created a Jira test project with 2 users and
20 issues. We consider that an issue can be in
one of the following states: Open (“Abierto”), In
progress (“En progreso”), Solved (“Resuelto”), Val-
idated (“Validado”), Handed (“Entregado”), Closed
(“Cerrado”), Reopen (“Reabierto”). In this project,
14 issues were in “Open” state , 1 was “In progress”,
1 was “Solved”, 1 was “Validated”, 1 was “Handed”,
1 was “Closed” and 1 was “Reopen”.

In addition, we prepared a set of 70 test questions
that a project manager would type in JiraGPT Next,
based on the experience of LKS Next staff. We con-
sider that each question belongs to one of the follow-
ing categories:

• Type 1: Questions whose answer can be retrieved
filtering issues by one field, e.g. List every issue
created in august 2023, which requires using the
date field.

• Type 2: Questions whose answer can be retrieved
filtering issues by two or more fields, e.g. List
every issue that was on approved state in august
2023, which requires using the date and status
field.

• Type 3: Questions that require additional interpre-
tation to provide an answer, e.g. How many issues
have changed to In Progress in august 2023?.

Among the 70 questions, 34% of them were of
type 1, 34% of type 2 and 32% of type 3, in order to
provide an even distribution in the dataset.

4.2 Results

These tests will show the effects of using different
prompts to convert a natural language query into a
JQL query that, once executed, returns a set of issues.
The prompts that will be tested are the text blocks that
form the prompt of the first phase, presented in sec-
tion 3.3. These have been tested incrementally, with
the first test using Block 1 as a prompt, the second test
using Blocks 1 and 2 as prompt, and so on.

These prompts can be categorized as zero-shot or
few-shot. Zero-shot prompts are those that give a task

to the LLM without any specific examples or instruc-
tions, whereas few-shot prompts provide the LLM
with a limited set of examples or instructions rele-
vant to the task. In essence, the difference between
zero-shot and few-shot prompting lies in the level of
guidance provided to the LLM. Zero-shot relies on the
model’s innate language understanding, while few-
shot offers a limited but task-specific context to en-
hance performance. More information about this can
be found in the literature (Zhou et al., 2023).

For each prompt we report its accuracy and token
cost. The former represents the number of queries to
which has provided a correct answer, out of the 70 in
the test set. The latter represents the amount of tokens
required by GPT to process the query as a measure
of cost. In GPT, one token corresponds roughly to 4
characters of text for common English text. Token us-
age has been calculated using OpenAI’s Tokenizer9.

The first test used the first block as prompt, which
obtained an accuracy of 17,14%. This prompt can be
considered as zero-shot because it does not provide
any example or further guidance beyond the request,
which can explain its low accuracy. An analysis of
the results revealed that this prompt did not generate
a correct JQL for any question that required querying
the status of a Jira issue. It also failed in every ques-
tion that did not provide explicitly the name of the Jira
project in use, because GPT made up names that did
not match with that of the test project. This prompt
uses 44 tokens.

The second test used the first and second block as
prompt, which obtained an accuracy of 22,86%. This
prompt results in an improvement in the accuracy
compared to the previous one mainly due to the in-
clusion of status names. The issues in the test project
have status names in Spanish and GPT assumes those
to be English, hence questions that failed for this rea-
son with the previous prompt are correct with this one.
This prompt uses 136 tokens.

The third test used the first, second and third
blocks as prompt, which obtained an accuracy of
37,14%. The increase in accuracy compared to the
previous prompt can be explained by three reasons:
the first one is that the inclusion of the third block
fixes a previously mentioned problem: GPT invent-
ing the name of the project when it is not provided
as part of the user query. The second one is the in-
clusion of a positive and a negative request in the
prompt. LLM-related literature (Zamfirescu-Pereira
et al., 2023) suggests that this practice improves the
quality of the results, as it receives an example of
what to do and what to not do. In this case ...Omit the
project name... is considered a positive request and

9https://platform.openai.com/tokenizer

...do not invent or assume... is considered a negative
request. The third one is that providing an example
makes this prompt of few-shot type, which has been
proved to be more effective (Zhou et al., 2023). This
prompt uses 219 tokens.

The fourth and last test considered the full tem-
plate used for the first stage of JiraGPT Next as
prompt, which obtained an accuracy of 48,57%. The
inclusion of a second example as part of the prompt
has resulted in an increase of the accuracy, mainly be-
cause the number of questions related to priority cor-
rectly answered is higher compared to the previous
prompt. This prompt uses 272 tokens.

To summarize these tests, we provide a compar-
ison of the results in Table 1. We can observe how,
the more complete the prompt, the better the accuracy
- but this comes with an increase in the token usage.
As an example, accuracy is 2.8 times better using the
full prompt compared to using just the first block, but
this comes with the cost of using 6.1 times more to-
kens. Including more examples to the prompt would
probably improve its accuracy but incurring in higher
costs.

Prompt blocks Accuracy Required tokens
1 17,14% 44

1 and 2 22,86% 136
1, 2 and 3 37,14% 219

Full 48,57% 272
Table 1: Summary of results for the tests with different
prompts.

Finally, we assessed the effect of the temperature
on the results of GPT. We run the same test using
the full prompt but with different temperature values,
from 0 to 1 with 0.1 steps. Results are shown in Fig-
ure 4. We can observe how 0 temperature provides
the best results and 0.8 the worst ones. We believe
that this is due to the nature of the task requested to
GPT: the generation of a JQL query is a demand for
a structured text where no creativity or randomness
is required. Given that lower temperature values pro-
duce more deterministic outputs, this could explain
why values lower than 0.5 produce the best results.

5 Related products

JiraGPT Next is not the only software using AI to im-
prove Project Management tasks. We conducted a re-
view of the existing ones and present in this section
a selection of the most relevant three: Kubiya.ai, Mi-
crosoft 365 Copilot, and Albus.

Figure 4: Accuracy of the full prompt with different tem-
perature values.

Kubiya.ai10 is a virtual assistant developed as a
Slack11 bot. Its main building blocks are Actions and
Workflows: Actions are API calls that retrieve, cre-
ate or modify data (e.g. to the GitHub API). Work-
flows are flows of Actions that Kubiya.ai decides to
use based on what the user has written as a prompt.
Workflows are composed of Actions and a user can
configure both. At the time of writing, the cost is $40
per month/user and there is no integration with tools
other than Slack like Jira (Only 10 Actions are pro-
vided), GitLab, Nexus, Sonarqube or Teams12.

Microsoft 365 Copilot13 is an assistant integrated
into Microsoft Teams, offering help to users of the
Microsoft 365 Applications suite. It includes a plugin
for the integration with Jira. At the time of writing,
the license cost is 30$ per month/user and there are
per-region established regulatory constraints.

Albus14 is an AI platform that can integrate ser-
vices like JIRA, Drive and Dropbox with a virtual as-
sistant hosted at Slack. Even though it offers integra-
tions with Jira, it lacks features like including links
to Jira issues in the response. At the time of writing,
each user account costs 10$/month with a limit of 100
questions/month.

The development and evaluation of JiraGPT Next
spanned over three months and used 493.955 tokens
of the GPT API, which incurred in the cost of ˜1$.
Even if the business model is not defined yet, we ex-
pect the usage cost of JiraGPT Next to be significantly
lower than the described products.

10https://www.kubiya.ai
11https://slack.com/
12These are in use at LKS Next, but are also widely used

in the industry.
13https://adoption.microsoft.com/copilot
14https://www.springworks.in/albus

6 Conclusions

This work has presented JiraGPT Next, a software
that extends Jira’s functionality providing the ability
to make requests in natural language. At its core lies
a process that uses the GPT LLM to firstly transform
user requests from text to JQL, then makes some fil-
tering and finally provides a reply back to the end user
in natural language. We described its user interface
and presented an evaluation of the accuracy and cost
of several prompts used as input for GPT.

The motivation of this work is to ease the way
that project managers and team members interact with
their Jira installation. This capability does not only
promise to streamline Project Management practices
but also to democratize the use of Jira, making it more
accessible to those without extensive prior training or
technical expertise.

Future work will mainly span in two directions.
One will be the improvement of the LLM-based pro-
cess that produces the answer to users’ queries. As
described in the Evaluation, an increase in the length
of the prompt implies more costs, so we will con-
sider the inclusion of more examples or the tunning
of existing ones. We will also consider using other
LLMs like Google’s Gemini15 and Meta’s Llama16,
which have proved to be solid alternatives to GPT.
We will also explore the possibility of adding a RAG
(Retrieval Augmented Generation) component to im-
prove the answers of the system.

The other will be the improvement of JiraGPT
Next as a product. Currently, the software is con-
sidered to be a prototytpe which requires further test-
ing and tuning. Next steps will involve the improve-
ment and addition of more features, plus conducting
tests with a large user base to assess the quality of its
replies with queries from different people and receive
feedback from its usability.

ACKNOWLEDGEMENTS

This work was partially supported by the grant
GAITECH: Cognitive assistance supported by GenAI
for software management and development in the
Public Administration (ZL-2024/00685), funded by
the Basque Government.

15https://gemini.google.com
16https://ai.meta.com/llama

REFERENCES

Auth, G., Jöhnk, J., and Wiecha, D. A. (2021). A concep-
tual framework for applying artificial intelligence in
project management. In 2021 IEEE 23rd Conference
on Business Informatics (CBI), volume 01, pages 161–
170.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc.

(Editorial) (2023). Prepare for truly useful large language
models. Nat. Biomed. Eng, 7:85–86.

Harned, D. (2018). Hands-On Agile Software Development
with JIRA: Design and Manage Software Projects Us-
ing the Agile Methodology. Packt Publishing.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. (2023). Survey
of hallucination in natural language generation. ACM
Comput. Surv., 55(12).

Jiang, Z., Araki, J., Ding, H., and Neubig, G. (2021). How
Can We Know When Language Models Know? On
the Calibration of Language Models for Question An-
swering. Transactions of the Association for Compu-
tational Linguistics, 9:962–977.

Nuhn, H., Oswald, A., Flore, A., and Lang, R. (2022). Ai-
supported natural language processing in project man-
agement -capabilities and research agenda. In 10th
IPMA Research Conference: value co-creation in the
project society.

Shrivastava, D., Larochelle, H., and Tarlow, D. (2023).
Repository-level prompt generation for large language
models of code. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202,
pages 31693–31715. PMLR.

Taboada, I., Daneshpajouh, A., Toledo, N., and de Vass, T.
(2023). Artificial intelligence enabled project man-
agement: A systematic literature review. Applied Sci-
ences, 13(8).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2023). Attention is all you need.

Zamfirescu-Pereira, J., Wong, R. Y., Hartmann, B., and
Yang, Q. (2023). Why johnny can’t prompt: How
non-ai experts try (and fail) to design llm prompts. In
Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, CHI ’23, New York,
NY, USA. Association for Computing Machinery.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. (2023). Large language models
are human-level prompt engineers.

