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Abstract— Accurate and evidence-based diagnosis is a key 
step in clinical practice. High-quality diagnoses depend on 
several factors, including physician's training and experience. To 
assist physicians, medical diagnosis systems can be used, as part 
of clinical decision support systems (CDSS), to improve the 
accuracy of diagnoses, as well as inform the clinician regarding 
the bases of the diagnostic decisions in the context of prior 
knowledge.  To support such CDSS systems, it is important to 
have accurate and well-formed knowledge bases with thoroughly-
annotated diagnostic criteria, as well as models for representing 
clinical observations that allow them to more easily be analyzed 
by expert-systems. We propose the use of Nanopublications as a 
way to store provenance data related to the content of diagnostic 
knowledge bases, as well as the clinical diagnoses themselves.  
The primary goal is to be able to rigorously track the complete 
diagnostic process: from the knowledge base construction and its 
supporting evidence, to the clinical observations and the context 
within which they were made, through to the diagnosis itself, and 
the rationale behind it. 

Keywords— nanopublications; clinical observations; 
provenance; diagnosis; medical diagnosis; decision support systems 

I.  INTRODUCTION 
Medical diagnosis is the process of determining the disease-

state of a patient based on their clinical phenotype. The 
diagnostic process is complex, but can be simplified to, first, 
obtaining the case facts from the patient's history, physical 
examination, and laboratory tests (collection of clinical data); 
second, evaluating the relative importance of the different signs 
and symptoms within that clinical data, based on expert-
knowledge, experience, and intuition; third, making a 
differential diagnosis based on all possible diseases that could 
be explained by the most relevant clinical symptoms; fourth, 
selecting the most likely diagnosis, or concluding that more 
evidence is required [1]. These procedures have been honed 
over centuries by physicians, based on their knowledge, 
training and experience. Recently, however, the quantity and 
granularity of clinical data routinely collected during patient 

encounters has resulted in the creation of computer based 
medical systems, namely diagnosis systems.  These can assist 
physicians in the diagnostic process, utilizing the speed of 
computers and the wealth of global medical knowledge to 
obtain (arguably) more accurate diagnoses by taking into-
consideration the full breadth of the available clinical 
observations. 

 In support of these automated systems, it is helpful to 
consider the design of clinical knowledge bases that can 
provide a maximum level of accuracy, while also providing 
rich contextual information to allow the clinical expert to 
assess the validity of the automated diagnosis. There are a wide 
range of sources of information that can be consulted to obtain 
information about diseases and their associated diagnostic 
criterion.  These can be mined to generate rules for a basic 
Diagnostic Criterion Model (DCM model) [2], and such rules 
form the basis for most of the existing diagnosis systems. 
Given that rules can be derived from a wide variety of sources, 
it is desirable to provide some means by which the origin of 
any given rule can be traced to its source.  This kind of 
"provenance" information currently is only recorded in an ad 
hoc manner, if at all, in existing diagnostic systems. 

Similarly, during the diagnostic process itself, it is desirable 
to keep track of how and why a physician reaches a diagnosis 
based on the patient data.  Each physician has different training 
and experience, and therefore may reach the same conclusion 
via different paths, or reach different conclusions from the 
same data.  Provenance tracking of clinical decisions, therefore, 
is necessary for reproducibility and proper record-keeping. 

In order to achieve the aforementioned aims, we propose 
that Nanopublications [3] could be used to store the 
provenance information associated with the clinical diagnostic 
process, as well as capturing the provenance of the rules 
contained within diagnostic knowledge bases. 
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The remainder of this paper is structured as follows: 
Section 2 presents related work. Section 3 presents the 
proposed model to represent the diagnostic information. 
Section 4 presents the results of our research.  Finally, Section 
5 outlines our conclusions and proposed future work. 

II. STATE OF THE ART 
A variety of approaches have been proposed in recent years 

to improve, using semantic technologies, the representation, 
processing and reuse of diagnosis information in medical 
information systems. These initiatives can be classified 
according to the specific application they were designed for, 
including the optimization of the diagnosis process [4], [5], the 
semantic representation of electronic health records (EHR) [6], 
and decision support systems [7]–[9]. 

Nevertheless, most of the systems developed to date do not 
store provenance information, or store it in a way that is 
difficult to access and interpret. Making electronic systems 
provenance-aware enables users to trace how a particular result 
has been produced, ensuring the reproducibility of scientific 
analysis and processes.  As a consequence, considerable effort 
has been recently directed to developing models that can 
support provenance-aware applications.  

A variety of provenance models and provenance-publishing 
frameworks have recently emerged, including the Open 
Provenance Model (OPM) [10], the Proof Markup Language 
(PML) [11], the PrIME methodology [12], the Provenir 
ontology [13], OvoPub [14], MicroPub [15] and finally the 
Nanopublication model [16], [17], which will be the focus of 
this paper. Some provenance models have been successfully 
applied to build new models and/or systems that can be used to 
solve specific problems in bioinformatics. A relevant example 
is the Biologic-Experiment-Result model (BERT) [18], which 
allows researchers to trace the experimental process flow in 
genomic databases. Another relevant example is the work by 
McCusker and McGuinness on how to add provenance 
information to data from high throughput experiments 
expressed using the MAGE (MicroArray and Gene Expression) 
standard [19]. The Chemical Information Ontology 
(CHEMINF) [20] has similarly been designed to take into 
account the provenance and reproducibility of data in 
computational experiments.  The work presented here is novel 
in being the first to address the need to formalize the capture 
and representation of provenance information in diagnostic 
knowledge bases and processes. 

III. MODELS 
In this section, we first briefly present the Nanopublication 

model.  We then introduce the Diagnosis Definition Ontology 
and discuss how it can be used to capture diagnostic rules.  We 
go on to discuss a novel model for how these diagnostic rules 
can be "compartmentalized" within different Nanopublications.  
Importantly, this compartmentalization allows the same clinical 
disorder to be defined by differing rule-sets (e.g. if two 
clinicians disagree on the diagnostic criterion for a given 
disease) while avoiding logical conflicts within the provenance 
data; moreover, the Nanopublication metadata then allows 
these differing rule-sets to be interpreted in the context from 
which they were derived.  Finally, we show how 

Nanopublications can also be used as a model for capturing 
diagnostic data from clinical encounters, together with the 
associated metadata relating to how, why, and when those 
observations were made. 

1. Nanopublication Schema 
Nanopublications are a semantic data model intended to 

capture the smallest unit of scientific fact: an assertion about 
anything that can be uniquely identified and attributed to its 
author [21]. Nanopublications have been created to support 
fine-grained attribution to authors and institutions with the aim 
of encouraging the reuse of data [3], for example, within the 
OpenPHACTS [22] consortium.  Assertions are made using 
domain-semantics drawn from community ontologies and other 
information models.  These are then "wrapped" within a 
named-graph [23] representing the Nanopublication itself.  
Additional named-graphs are linked to the Nanopublication, 
allowing provenance, annotation, attribution and citation to be 
associated with the assertion [21].  The basic elements of a 
Nanopublication are: 

Assertion. This named graph contains statements that 
represent the scientific assertion being made by the author(s).  
Assertions consist of one or more semantic triples that form a 
single, indivisible unit of scientific thought. 

Provenance. This named graph contains the authorship or 
origin of the assertion, and how it “came to be”.  For example, 
by direct experiment, or by in silico prediction, when, and by 
whom?  Statistical p-values and other indicators of validity 
should also be recorded here. 

Publication Information. In the "PubInfo" named graph, 
important contextual information regarding the 
Nanopublication itself can be added.  When was the 
Nanopublication produced, and by whom? Who owns the 
rights? 

Nanopublications will soon include other features such as 
integrity hashes and versioning; however those issues will not 
be discussed further here.  The one upcoming feature that is 
relevant, however, is the (as-yet not ratified) Nanopublication 
Collection model.  This extension to the existing 
Nanopublication schema will allow Nanopublications to be 
grouped, and thereby share common metadata.  In the context 
of this manuscript, we utilize this feature to allow individual 
diagnostic assertions to have independent statements of 
metadata (e.g. P-values), while still being part of a common 
overall model with its own metadata.  As indicated by Paul 
Groth on the Nanopublication mailing list, collections are 
anticipated to become part of the formal specification in the 
next release. 

2. Diagnosis Definition Ontology 
In our previous work, semantic technologies were applied 

to build medical diagnosis systems for general practitioners [2], 
[5], [9], [24], [25], and later adapted to psychological disorders 
[26], [27].  The Diagnosis Definition Ontology (DDxDO)1, was 
designed based on these previous efforts.  It is a small ontology 
containing the core set of entity/relations that describe the 

                                                           
1 http://purl.org/DDXDO/ 
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diagnostic process. These include concepts such as diseases, 
disorders, clinical findings (signs and laboratory tests) and the 
relationships between them.  The ontology is written in OWL 
[28] and is designed to encode the definitions of diseases, as 
well as represent the data coming from clinical observations 
during the diagnostic process.  More detailed information about 
the DDxDO ontology is available on the project website2. 

3. Nanopublishing disease definitions 
Though there are well-established and widely published 

clinical diagnostic guidelines (e.g. the Framingham 5 and 10-
year risk guides), it has been shown that these guidelines are 
not rigorously followed by individual clinicians when making 
diagnoses or intervention decisions [29].  As such, there is a 
need to "personalize" diagnostic guidelines, such that not only 
are the rules themselves transparent and explicit, but the 
contextual information surrounding that novel set of rules is 
also explicit.  The same is true when deriving treatment or 
diagnostic rule-sets from widely differing sources, not only 
physicians with different training/experience, but also text-
mining from books or the Web, or through rule-discovery 
within data by machine-learning processes [30], [31]. 

Here, we propose a semantic model based on 
Nanopublications that both "compartmentalizes" the varying 
rule-sets associated with diagnosis of the same disease, and 
keeps-track of the contextual information surrounding the 
derivation of that specific set of diagnostic/intervention rules.  
The model is depicted in Figure 1, and consists of two 
Nanopublications - one representing a disease definition, and 
the other representing a clinical finding - that are linked-
together in a one-to-many relationship.  The disease definition 
consists of assertions that link disease names to their associated 
clinical findings; the clinical findings flesh-out the exact 
criterion that would cause that finding to be true.  For example, 
["Typhoid fever" has clinical finding "Fever"] is an assertion 
within the disease definition Nanopublication; and ["Fever" 
sublingual body temperature" > 39ºC"] is an assertion within 
the Clinical Finding Nanopublication. We will now go into 
further detail on how these Nanopublications should be used in 
our model. 

 

 
Figure 1. Nanopublication of disease definition. 

                                                           
2 https://github.com/wilkinsonlab/DDxDO 

 

Disease Definition 

For each disease definition derived from a different 
information source (physician, researcher, textbook, guideline, 
etc.) a Nanopublication Collection will be created representing 
the diagnostic model of that disease according to that source. 

Within these Nanopublication Collections, the Assertion 
named graphs will contain OWL property restrictions 
representing individual diagnostic criteria, according to that 
expert-source. Effectively, a set of [Disease equivalent_to 
has_clinical_finding some Finding] property restrictions, 
defined using the DDxDO ontology.  Diagnostic criteria each 
have provenance information, including their likelihood of 
being associated with the disease.  Shared provenance 
information, spanning all diagnostic criteria, includes the name 
of the physician, or the website from which the criteria were 
derived.  This is encoded using ontologies such as PAV [32], 
Dublin Core [33] and the Nanopublication schema itself. 

Clinical Finding 

Each Diagnostic Model's restriction assertions are 
associated with a Clinical Finding, which is also defined via 
OWL property restrictions, following the DCM model [2]. This 
allows the models to be used by automated medical systems to 
execute a diagnosis by interpreting raw clinical data, or by 
physicians to explore detailed information about the 
symptomology of a disease. The Nanopublication of clinical 
findings will contain the following important data: 

The Assertion named graph will contain restrictions on one 
of a limited number of properties, including has_sign (for 
direct clinical observations), has_diagnostic_test, or 
has_disorder (for prior/existing disorders or diseases).  These 
restrictions might also include details such as levels of 
intensity, or value-ranges.  For this purpose several ontologies 
such as Semanticscience Integrated Ontology (SIO)3, 
Measurement Unit Ontology (MUO)4, Units Ontology (UO)5 
or Quantities, Units, Dimensions and Data Types Ontologies 
(QUDT)6 could be used to create these OWL restrictions, as 
was done in our previous work on encoding diagnostic rules in 
OWL [29], [34].  

Provenance information associated with these Assertions 
will include all the information regarding the nature of the data 
introduced in the assertions such as the source of the definition 
(automated, manually-derived), author, version, etc. 

What is most crucial to note about this model is that the 
disease definition can be re-assembled from these separate 
Nanopublications; the contents of the Assertion graphs 
combine to become a valid OWL-DL Class that can be utilized 
directly by logical reasoners to automatically interpret 
Nanopublished clinical data (as described below). 

                                                           
3 https://code.google.com/p/semanticscience/wiki/SIO 
4 http://idi.fundacionctic.org/muo/ 
5 https://code.google.com/p/unit-ontology/ 
6 http://www.qudt.org/ 
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4. Nanopublishing clinical data and diagnoses 
To be able to utilize these OWL-encoded diagnostic 

models, we must have clinical data encoded in a format that is 
amenable to automated reasoning.  Moreover, it would be 
desirable to also capture the metadata around these clinical 
observations as they pass through the diagnostic process; this 
includes not only metadata about how the measurements were 
made during the clinician-encounter, but also metadata about 
how the clinical measurements contributed to the final 
diagnosis.  Once again, we propose the Nanopublication 
schema for this task.   The model we propose is depicted in 
Figure 2. 

 

 
Figure 2. Nanopublication of the diagnostic decision. 

 

Two Nanopublications and one Nanopublication Collection 
are used to store clinical data and their links to diagnostic 
decisions, and these will now be described in detail. 

Diagnosis 

The Diagnosis Nanopublication describes the final 
diagnosis - a single disease diagnosed by a single physician. 

The Assertion graph in the Diagnosis Nanopublication 
contains a single triple identifying the diagnosed disease by its 
SNOMED code. We use the diagnosis relationship of DDxDO 
to make this assertion as follows: 

 <patientID> ddxdo:diagnosis <disease>. 

<disease> ddxdo:has_code <codeRepresentation> 

<codeRepresentation> sio:’has value’ “Code” . 

<codeRepresentation> ddxdo:code_type “SNOMED Code”. 

The Provenance graph describes how the physician or 
automated system reached the conclusion. The core of the 
provenance are two triples; one describing the has_input_data 
relationship, which links the Diagnosis Nanopublication to the 
Patient Data Nanopublication, containing the raw data used to 
make that diagnosis; the second describes the  
has_clinical_finding relationship, which links the Diagnosis 
with Clinical Findings that support the performed diagnosis 
(described below). The Publication Info graph contains 

information about the physician who performed the diagnosis, 
the date, etc. 

 

Clinical Finding supporting Diagnosis 

The Clinical Finding Assertion graph describes the set of 
filtered/interpreted clinical data that was deemed to be relevant 
to reaching the conclusion in the Diagnosis.  Clinical Findings 
can be re-used by multiple Diagnosis Nanopublications. This 
covers two common scenarios: 1) the patient is suffering more 
than one disease, or 2) diagnosis has been performed by 
multiple physicians.  Information regarding how that raw 
clinical data was interpreted/filtered in order to generate the 
Clinical Finding is stored in the Provenance named graph. 
Finally, the Publication Info graph describes the provenance of 
the Clinical Finding Nanopublication itself. It is important to 
note that the Nanopublications supporting the diagnosis could 
be either positive (symptom is present) or negative (symptom 
is absent), thus these are not precise duplicates of the Patient 
Data Nanopublications. 

Patient Data 

The Patient Data Nanopublication Collection captures the 
patient's raw clinical data - the data that is "filtered" to become 
Clinical Findings supporting the Diagnosis. Patient Data 
Assertions are triples where the manifest_clinical_finding 
predicate of DDxDO is used to link a patient with a symptom 
that they are exhibiting, coded using SNOMED. Assertions 
could contain more information about the symptom such as 
intensity, duration or any other valuable information regarding 
the manifestation.  Provenance metadata might include, for 
example, the method or machine used to take the measurement. 

More information 

All the models presented in section III are fully explained 
with more detailed figures in the DDx2NP webpage [36, p. 2]. 

IV. RESULTS 
A prototype of the models described above has been 

created. In [35], we describe a multi-level diagnosis system 
based on [2], [5], [24], [25]. The output from that investigation 
includes both clinician and automated diagnoses; however, 
provenance data was not formally associated with these 
outputs, for example, how the clinician or diagnostic system 
reached its conclusion.  We therefore re-used the data and 
infrastructure from this earlier analysis to demonstrate the 
utility of our model, using the process described below.  The 
source code and binaries to reproduce the analysis, as well as 
the resulting nanopublications, are available at the DDx2NP 
webpage [36, p. 2]. 

Knowledge base creation 

The software first loads information about the disease into 
the knowledge base from a file containing the relations 
between diseases and their necessary Clinical Findings (the 
has_clinical_finding relationship in Figure 2). For each disease, 
a Nanopublication Collection file is created, defining the 
collection of disease-associated clinical findings (assertions) 
and provenance data such as probability of association (in the 
current version of the software, this is randomly generated for 

338



demonstrative purposes). Subsequently, Clinical Finding 
Nanopublications (Figure 2) are created, containing the specific 
clinical definition of that finding (e.g. the boundaries of the 
temperature).  

Diagnosis creation 

Our software first creates a Nanopublication Collection file 
containing the clinical data of the patients from [35]. This 
includes the Clinical Findings manifested by the patient and 
provenance data related with those assertions.  In that earlier 
analysis, for each clinical case, at least 3 physicians plus the 
automated system proposed a set of diseases as possible 
diagnoses.  Thus, our software generates individual 
Nanopublications describing these independent diagnoses.  
Since the original study did not capture the true provenance of 
how a diagnostic decision was made, our prototype executes a 
random algorithm to use clinical manifestations of the patient 
as supporting information for the diagnosis. For each 
supporting finding selected by the random algorithm a new 
Nanopublication file containing that information is created. 

V. CONCLUSIONS AND FUTURE WORK 
Representation of clinical data with provenance information 

is crucial in order to achieve high-quality, auditable, and 
reproducible clinical practice.  Using the proposed models, the 
diagnostic process - the core of clinical practice - can now be 
rigorously tracked.  The models enable the capture and 
representation of provenance information regarding two 
distinct but related processes: The rules describing the 
diagnostic framework, and provenance information about the 
diagnostic event itself.  The first describes how the diagnostic 
knowledge base was created/curated, including information 
about where the knowledge originated, and who selected the 
diagnostic criteria. These knowledge bases can be explored to 
obtain precise information about diseases definitions, 
according to different sources; moreover, the desired rules can 
then be individually selected, resulting in a personalized 
decision support system containing diagnostic rules generated 
by experts (or expert-systems) with differing opinions.  The 
second keeps track of how and why a clinician or expert-
system reached a diagnosis from the patient data - what rules 
did they apply, and why.  This will allow the capture of 
detailed information about expert diagnostic procedures, 
potentially enabling the development of more accurate decision 
support systems through learning from past errors, or simply 
recording information for auditing purposes. 

Future work will be focused on the extension of the current 
approach to include additional knowledge related to the 
diagnosis process and the elements that are part of it such as 
treatments, drug usage or prognosis, each with its own 
provenance information. As part of the future efforts, an 
analysis of the expressiveness of our model in comparison with 
other approaches will also be taken into account as well as a 
performance evaluation of the use of this data. 
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