Applying Ontology Design Patterns in
Bio-ontologies

Mikel Eganal, Alan Rector!, Robert Stevens!, and Erick Antezana?3

1 School of Computer Science, University of Manchester, UK
2 Department of Plant Systems Biology, VIB, Gent, Belgium
3 Department of Molecular Genetics, Gent University, Belgium
{eganaarm, rector, robert.stevens}@manchester.ac.uk,
erant@psb.ugent.be

Abstract. Biological knowledge has been, to date, coded by biologists
in axiomatically lean bio-ontologies. To facilitate axiomatic enrichment,
complex semantics can be encapsulated as Ontology Design Patterns
(ODPs). These can be applied across an ontology to make the domain
knowledge explicit and therefore available for computational inference.
The same ODP is often required in many different parts of the same
ontology and the manual construction of often complex ODP semantics
is loaded with the possibility of slips, inconsistencies and other errors.
To address this issue we present the Ontology PreProcessor Language
(OPPL), an axiom-based language for selecting and transforming por-
tions of OWL ontologies, offering a means for applying ODPs. Example
ODPs for the common need to represent “modifiers” of independent en-
tities are presented and one of them is used as a demonstration of how
to use OPPL to apply it.

1 Introduction

Many bio-ontologies have been created to represent biological knowledge [1]. Bi-
ology is an interesting test-bed for knowledge management, due to the volatility,
breadth and complexity of the knowledge that needs to be represented in bio-
ontologies. Such representation is usually undertaken by biologists, which has
both advantages and disadvantages. It is positive because biologists as domain
experts are the ones who perceive the subtleties of the knowledge that, if well
represented, can make a difference in the usefulness of the ontology being built.
A negative aspect is that biologists often lack training with Knowledge Repre-
sentation (KR) languages with strict semantics and, therefore, do not use many
of the features of those languages. As a result, there are difficulties with main-
tenance and computational use in many bio-ontologies that could be helped by
richer axiomatic content. With increasing demands for re-use and the increasing
scale of ontologies, these problems are becoming more severe.

Ontology Design Patterns (ODPs) are one solution that can help address the
problems mentioned above. ODPs encapsulate in a single named representation
the semantics that require several statements in low level ontology languages.
ODPs instantiate high-level metamodels (such as the logical ODPs described in

A. Gangemi and J. Euzenat (Eds.): EKAW 2008, LNAI 5268, pp. 7{16 2008.
© Springer-Verlag Berlin Heidelberg 2008

8 M. Egana et al.

[2]) in concrete languages such as OWL: Therefore ODPs are equivalent to the
notion of content ODPs described in [2].

Providing predefined ODPs can help biologists overcome the difficulty of using
a logic-based language, that most biologists (and other end-users) often find
difficult and counter-intuitive. ODPs also provide a vocabulary for discussing
alternative representations for similar notions. An example of such ODPs are
those that enable the “modification” of independent entities. We describe three
such ODPs in Section [Z} their pros and cons; and the features each supports.

Having selected a suitable ODP for a representation requirement, a further is-
sue is the application of that ODP. ODPs often encapsulate complex semantics
and are repeatedly applied across an ontology. Such activities, when carried out
by humans, are often error prone. To ease the application of ODPs, as well as the
general application of axioms during enrichment, we present the Ontology PrePro-
cessor Language (OPPL) [3], a high-level macro language for adding axioms to an
ontology, in Section[3 The rapid and consistent application of transformations to
an ontology can ease the “experimentation” of using different ODPs, by allowing
alternative modelling options to be applied rapidly and tested. Once a final choice
is made, OPPL scripts can be re-applied and/or modified as necessary.

2 Ontology Design Patterns for Modelling Biological
Knowledge

Although ODPs have already been explored as a KR technique [4], they have
not been widely used in bio-ontologies, except in a few cases such as the devel-
opment and axiomatic enrichment of the Cell Cycle Ontology (CCO) [5]. The
applicability of ODPs is, however, much wider and should be a significant com-
ponent of the migration of axiomatically lean bio-ontologies to ones that are
axiomatically rich. In this section we briefly present some ODPs to show their
benefits in modelling biological knowledge.

ODPs are presented in OWL as instantiations of more abstract models, and
therefore they are simply OWL fragments, but they exemplify more general
structures. The OWL to UML mapping used for representing ODPs [G] is shown
in Figure[dl

The three ODPs presented tackle the same problem: how to represent “mod-
ifiers” and “values”. Modifiers and values are a subset of the constructs that re-
fine the status of independent entities using dependent entities, variously called
“qualities”, “attributes”, “features”, etc. by different authors. The terms “mod-
ifier” and “value” are used in this paper as being neutral amongst various pro-
posed upper ontologies and familiar to our users.

There are three mechanisms advocated for representing modifiers by differ-
ent authors. In BFO [7], the authors advocate the use of what we here call the
Entity-Quality ODP; In DOLCE [§], the authors advocate the use of what cor-
responds to what we here call the Entity-Feature-Value ODP, although they use
the word “Quality” for what we here call “Feature” (we have used two different
terms, “Quality” and “Feature”, to avoid confusion between the two). Finally,

Applying Ontology Design Patterns in Bio-ontologies 9

<=owl::ObjectProperty>>
<<owl:FunctionalProperty=>
has position

class name

=<rdfs;range>z 1 1 <=rdfs:domain>z
v v
OWL expression OWL expression
OWL expression (subdass) —D OWL expression (superclass) OWL expression <}———{> owL expression

<<owl::allValuesFron>> propery OWL expression <<owl::someValuesFrons> propert OWL expression

n T
osrss s, om apresion P i RELEE :
n OWL expression n OWL expression 1
— — J=<owl::intersectionOf=>> _ _ _
1
|
t1 property L v V
<<exactly>> OWL expression]
E P OWL expression n OWL expression 1

Fig. 1. Partial OWL to UML mapping for representing ODPs. Names of some OWL
constructs are presented in grey, and under them, their representation in UML, in bold.
Named entities are represented by boxes (classes) and diamonds (properties); an OWL
expression can have any complexity

there is the “naive” Entity-Property-Quality ODP, which is the approach that
corresponds most closely to what users often expect.

The position of structures in a cellular context is used as a running example
for each of the three ODPs. Certain cellular components have a position within
a cell as part of the overall processes in which they participate. Thus, “position”
is the modifier and the “cellular component” is the independent entity modified.
The possible “values” for the “modifier” are “apical” and “basal”. This modifier
applies only to “cell parts”, e.g. mitochondria; the “values” are mutually exclu-
sive and only one may apply to any one “cell component”. This scenario is a real
problem faced, for example, by the Gene Ontology (GO) [9], where we can find
terms like basal labyrinth (GO:0033774) without any further axiomisation
in terms of position (only is a and part of relationships).

The requirements are: (1) to represent which modifiers apply to which inde-
pendent entities and vice versa; (2) to represent which values apply to each mod-
ifier (possibly according to which independent entity it applies—e.g., “position”
does not apply to “cytoplasm”); (3) the mutual constraints amongst the values—
whether there can be only one or more than one values and whether the values are
mutually exclusive (the usual case); and (4) whether the modifiers apply to all or
only some of a given category of independent entity—e.g. position applies in prin-
ciple to any cell part but it is only relevant for mitochondria in relation to stomach

10 M. Egana et al.

epithelial cells where the distinction is vital for their biological function. A differ-
ent ODP may be chosen in each implementation depending on the requirements
of the user or the system; therefore there is no one “best” ODP.

2.1 Entity-Quality ODP

The application of this ODP is shown in Figure 2l The use of “position” corre-
sponds roughly to the use of “quality” in BFO. The entities are linked to the
qualities by Qualified Cardinality Restrictions (QCRs) (max 1 if the quality is

<<owl:imaxe> Q
has_quality <<owl::allValuesFron>> inv (has quality)

<=rdfs:domain=>

<=<owl: ObjectProperty ==
=<=<owl::FunctionalProperty==
has_position

basal_complex
mitochondria
apical_complex

<<owl::disjointWith>>

Fig. 3. Structure of the application of the Entity-Property-Quality ODP

<<owl: :someValuesFron>> |1

Applying Ontology Design Patterns in Bio-ontologies 11

<<owl:: ObjectProperty=>
<<owk:FunctionalProperty>>
has_state

<<owl::ObjectProperty==
<~<owl::FunctionalProperty>>
as_orientation

<] oWl unionoTes

Feature
[Fatel |

, :

changing

has_state

i

=<owl: :s0mevaluesrroms>
1
| /\

Z<owl: 1dis]ointAithes

basal_complex

apieal |h s orientation apical complex
i

[<<owl: :somevaluesFrom=>
' ?
<<owl: disjointnithe> <<owliiexactly=> |

has_feature

p 3

apical_complex_position |i

postion}<

]
1
Ll
|
1
Ll
1
<<owl::disjointhith=>

Fig. 4. Structure of the application of the Entity-Feature-Value ODP

accidental or exactly 1 if the quality is intrinsic). This ODP, compared with
the following two, offers simplicity in authoring as only one general object prop-
erty is needed (has gquality). The disadvantages of this ODP are: it cannot
handle multi-aspect qualities (such as colour’s saturation and intensity aspects);

12 M. Egana et al.

it may be more difficult to use in software; it requires the maximum cardinality
to be specified (a step that users often omit).

2.2 Entity-Property-Quality ODP

Qualities can also be modelled using the Entity-Property-Quality ODP (Figure[d),
in which (optionally functional) object properties are used to represent different
types of qualities: the domain and range are the entity and the quality values, re-
spectively, to limit the modifiers to the required entities. The entities are linked
to quality values by simple existential restrictions. Therefore this ODP results in a
proliferation of object properties (which is more difficult to maintain than the class
hierarchy), but overall it is easier to author as it is closer to user intuition. Again,
this ODP can not handle multi-aspect qualities.

The difference between the Entity-Quality ODP and the Entity-Property-
Quality ODP lies mainly in two points: (1) how to limit the entities being mod-
ified (Entity-Quality ODP uses the universal restriction and the max 1 QCR,
whereas the Entity-Property-Quality ODP uses domain and ranges), (2) how to
limit cardinality (Entity-Quality ODP uses the QCR exactly 1 and Entity-
Property-Quality ODP uses the fact that the object property is functional).

2.3 Entity-Feature-Value ODP

This is the most general ODP for representing modifiers (Figure H]). This ODP
is the only one that allows for modifiers with multiple aspects (e.g. a position
with an orientation and a state), which is its main advantage over the other
two ODPs. Entities are linked to features with QCRs (exactly 1 for intrinsic
or max 1 for accidental features). The feature is linked to different aspects via
existential restrictions. Another advantage is that it requires only a few object
properties. It is, however, the ODP that needs most entities and therefore is the
most difficult to author. “Feature” is the equivalent of DOLCE’s “Quality”.

3 Applying Ontology Design Patterns with the Ontology
PreProcessor Language

The Ontology PreProcessor Languageﬂ (OPPL) is a high-level language for ap-
plying ODPs in ontologies. OPPL offers an API-like access to the axioms and
annotations of any OWL ontology. The OPPL syntax is a modified version of the
Manchester OWL Syntax [10], with some added keywords such as ADD, SELECT
and REMOVE. OPPL is capable of querying an ontology and adding/removing
axioms of arbitrary complexity to/from the obtained entities (axioms can be
added or removed also without selecting any entity).

The core of the OPPL syntax is the “OPPL instruction” (Figure[): the OPPL
instructions are written in a flat file and the OPPL software interprets them,
applying the changes to an ontology and generating a new ontology (comments,
starting with #, are ignored by the OPPL software).

'http://oppl.sourceforge.net/

http://oppl.sourceforge.net/

Applying Ontology Design Patterns in Bio-ontologies 13

SELECT equivalentTo part_of only (mitochondria or chloroplast) ;
ADD subClassOf has_function some energy_production;

Fig. 5. OPPL instruction

The instruction from Figure B when interpreted by the OPPL software, will
query the reasoner to select (SELECT keyword) any class that is equivalent to
the anonymous class part of only (mitochondria or chloroplast) and
will add (ADD keyword) the axiom has function some energy production
to it as a necessary condition. Named entities (classes, individuals or object
properties) can also be added or removed, not only selected, and many axioms
can be added/removed to/from the same entity.

OPPL, compared to the macros implementation described in [I1], works at a
much more abstract level (axioms instead of RDF/XML), is able to exploit rea-
soning, is able to query the model, and is able to remove axioms (not only add).
In comparison with SPARQIE and SPARQL DL [12], OPPL offers the possibility
of adding and removing axioms (not only querying). In terms of querying, OPPL
allows for a greater expressivity than SPARQL DL, at the price of not allow-
ing variables (i.e. the condition that an entity must fulfill to be selected by the
reasoner is formed by expressions where only named entities can be found). The
impossibility of using variables within query expressions makes OPPL rather
“local” to the ontology being modified, as the user must be familiarized with the
entities from the ontology.

OPPL is also well suited to the application of ODPs. Figure 6 shows an extract
from the OPPL flat file used to apply the Entity-Quality ODP in CcCoB.

A selection criterion is needed to retrieve only the intended entities that form
the target of the ODP. OPPL offers the SELECT instruction, allowing the defi-
nition of a condition to retrieve all the entities that match the condition. Such
condition can be stated either via logic axioms or annotations. For the condi-
tions based on logic axioms, a reasoner can be used to retrieve the entities (e.g.
equivalentTo part of only (mitochondria or chloroplast)) from
the inferred model.

A condition based on annotation values (e.g. SELECT label " (basal|
apical) (.+?)") is defined based on strings: any entity whose annotation
matches a regular expression will be selected. Apart from being selected, the
content of the matched string will be available, via the < > constructor (e.g.
has position exactly 1 <1>), to the later instructions, which can resolve
that content against the OWL ontology and exploit it for new axioms (in this
case, the first group of the label of whatever class matches the regular expres-
sion). This annotation processing feature of OPPL is especially useful when deal-
ing with bio-ontologies, since most of them have axioms “buried” in annotation

2 http://www.w3.0rg/TR/rdf-spargl-query/
3 The original OPPL file with the ontologies and execution logs can be downloaded
from: http://www.gong.manchester.ac.uk/OPPL EKAW2008.tar.gz

http://www.w3.org/TR/rdf-sparql-query/
http://www.gong.manchester.ac.uk/OPPL_EKAW2008.tar.gz

14 M. Egana et al.

######### Applying the Entity-Quality ODP in CCO #########

Quality values

ADD Class: modifier;

ADD ObjectProperty: has_position;

ADD Class: position;ADD subClassOf modifier;REMOVE subClassOf Thing;

ADD Class: apical;ADD subClassOf position;REMOVE subClassOf Thing;

ADD Class: basal;ADD subClassOf position;ADD disjointWith apical;

constrain the quality values to the entities (CCO_C0001882 = cell part)

SELECT Class: position;ADD equivalentTo apical or basal;
ADD subClassOf inv (has_position) only CCO_C0001882;

not having a position is legal

SELECT Class: CCO_C0001882;
ADD subClassOf has_position max 1 position;

In order to apply the ODP in different places of the ontology, we need
a general condition that will catch different target classes (doing it
by hand would be tedious, inefficient and would betray the aim of ODPs).
We will define a regexp "(basal|apical) (.+?)": <1> refers to the first
group from the string that matches the regexp

SELECT label " (basal|apical) (.+?)";ADD subClassOf has_position exactly 1 <1>;

Fig. 6. An extract of an OPPL flat file

values, GO being an example of such a tendency [I3]. GO has approximately
20000 classes and the procedure of executing the file of Figure [@ catches 24
classes to which to apply the Entity-Quality ODP, which saves a lot of time as
it would be very inefficient to apply the ODP, one by one, in those 24 classedd.

OPPL offers a straightforward, flexible and reusable way of “programmati-
cally” interacting with the ontology. OPPL instructions can be re-used in dif-
ferent parts of an ontology, in separate stages of development or by different
users. Using OPPL, complex ODPs can be applied or rejected in one go (just
by uncommenting or commenting the OPPL instructions); ODPs can be stored
for application at any time; ODPs can be shared (sharing the flat files with
the OPPL instructions) and the design decisions can be made explicit using the
comments.

In a large ontology where an ODP is repeated many times application of that
ODP via OPPL avoids tedium and slips and provides consistency. For example
OPPL can be used to easily try and compare the different ODPs for modifiers
reviewed in this paper.

Although OPPL is an early attempt towards a flexible way of working with
ontologies, it has been successfully used within the axiomatic enrichment and

4 The execution was done using CCO, which incorporates big and representative parts
of GO; it could be that the matched classes are even more.

Applying Ontology Design Patterns in Bio-ontologies 15

maintenance of CCO: OPPL has been used to apply ODPs such as the Sequence
ODP, to make corrections on the ontology, to store and execute OWL queries
and to check consistency. As a consequence of applying the Sequence ODP, new
queries could be performed against CCO about specific cell-cycle-related events
taking into account their sequentiality [5].

4 Conclusion

ODPs encapsulate the complex semantics needed for rich modelling in concrete
models. Encapsulation in the form of ODPs, on its own, is not, however, enough;
the encapsulation must be usable, and hence ODPs need to be easy to apply.
Therefore we have developed OPPL, to be able to consistently and efficiently
apply ODPs in bio-ontologies. OPPL will be further extended with capability
for variables, enabling more subtle transformations of material already encoded
in an OWL ontology. Using variables means that the user can work with the
“pure” structure of the ontology in an ontology-independent manner. We have
also demonstrated how OPPL can be used (and has been used) to apply ODPs
in actual bio-ontologies. OPPL, combined with ODPs public repositoriedd, com-
poses a basic infrastructure for exploring, choosing and applying ODPs. Using
such infrastructure, ODPs offer a route for an enhanced knowledge management
in biology.

The use of ODPs in biology can be regarded as a microcosm of the challenges
that knowledge management will have to face as it becomes more widespread,
especially through the Semantic Web. Although ODPs’ usage in bio-ontologies
is still limited, they have already brought benefits in terms of axiomatic richness
and maintainability [I3I5]. We therefore envisage that they will be of similar
benefit for the wider Semantic Web.

Acknowledgements

Mikel Egania Aranguren is funded by the University of Manchester and EPSRC.
Erick Antezana is funded by the European Science Foundation (ESF) for the
activity entitled Frontiers of Functional Genomics.

References

1. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions.
Brief. Bioinformatics 7(3), 256-274 (2006)

2. Pressuti, V., Gangemi, A., David, S., de Cea, G.A., Suarez-Figueroa, M., Montiel-
Ponsoda, E., Poveda, M.: A Library of Ontology Design Patterns. NeOn Deliver-
able 2.5.1 (2008)

3. Egana, M., Antezana, E., Stevens, R.: Transforming the Axiomisation of Ontolo-
gies: The Ontology Pre-Processor Language. In: OWLed. (2008)

5 http://ontologydesignpatterns.org, http://odps.sf.net/

http://ontologydesignpatterns.org
http://odps.sf.net/

16

10.

11.

12.

13.

M. Egana et al.

Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
262-276. Springer, Heidelberg (2005)

Aranguren, M.E., Antezana, E., Kuiper, M., Stevens, R.: Ontology Design Patterns
for bio-ontologies: a case study on the Cell Cycle Ontology. BMC bioinformatics 9
(suppl. 5), S1 (2008)

Brockmans, S., Volz, R., Eberhart, A., Loffler, P.: Visual Modelling of OWL DL
Ontologies using UML. In: Mcllraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 198-213. Springer, Heidelberg (2004)

Grenon, P., Smith, B., Goldberg, L.: Biodynamic Ontology: Applying BFO in the
Biomedical Domain. In: Pisanelli, D.M. (ed.) Ontologies in Medicine, pp. 20-38.
IOS Press, Amsterdam (2004)

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
ontologies with DOLCE. In: Gémez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS(LNAI), vol. 2473, pp. 166-182. Springer, Heidelberg (2002)

Gene Ontology Consortium: Gene Ontology: tool for the unification of biology.
Nature Genetics 23, 25-29 (2000)

Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.: The
Manchester OWL syntax. In: OWLed. (2006)

Vrandeci¢, D.: Explicit Knowledge Engineering Patterns with Macros. In: Welty,
C., Gangemi, A. (eds.) Ontology Patterns for the Semantic Web Workshop (ISWC)
(2005)

Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: OWLED
(2007)

Aranguren, M.E., Wroe, C., Goble, C., Stevens, R.: In situ migration of handcrafted
ontologies to reason-able forms. Data and Knowledge Engineering 66(1), 147-162
(2008)

	Applying Ontology Design Patterns in Bio-ontologies
	Introduction
	Ontology Design Patterns for Modelling Biological Knowledge
	Entity-Quality ODP
	Entity-Property-Quality ODP
	Entity-Feature-Value ODP

	Applying Ontology Design Patterns with the Ontology PreProcessor Language
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

