
OPPL-Galaxy: Enhancing ontology exploitation in Galaxy
with OPPL

Mikel Egaña Aranguren
Ontology Engineering Group
School of Computer Science

UPM, Spain
megana@fi.upm.es

Jesualdo Tomás
Fernández-Breis

School of Computer Science
UM, Spain

jfernand@um.es

Erick Antezana
Department of Biology

NTNU, Norway
erick.antezana@bio.ntnu.no

ABSTRACT
Biomedical ontologies are key to the success of Semantic
Web technologies in Life Sciences; therefore, it is important
to provide appropriate tools for their development and fur-
ther exploitation. The Ontology Pre Processor Language
(OPPL) can be used for automating the complex manip-
ulation needed to devise biomedical ontologies with richer
axiomatic content, which in turn pave the way towards ad-
vanced biological data analyses. We present OPPL-Galaxy,
an OPPL wrapper for the Galaxy platform, and a series of
examples demonstrating its functionality for enriching on-
tologies. As Galaxy provides an integrated framework to
make use of various bioinformatics tools, the functionality
delivered by OPPL to manipulate ontologies can be com-
bined along with the tools and workflows devised in Galaxy.
As a result, those workflows can be used to perform more
thorough analyses of biological information by exploiting ex-
tant biological knowledge codified in (enriched) biomedical
ontologies.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and medical sciences—
Biology and genetics

General Terms
Experimentation

Keywords
OWL, Galaxy, OPPL, Bio-ontologies

1. INTRODUCTION
As part of the current, typical life sciences research activ-

ities, information is extracted from raw data and shared on
the web. A new biological insight is generated by combining
that information and the scientist’s expertise. Nevertheless,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWAT4LS ’11 December 7-9, 2011 London, UK
Copyright 2011 ACM 978-1-4503-1076-5/11/12 ...$10.00.

integrating information and generating knowledge out of it
is still a challenging task, as the information is frequently
codified in computationally opaque formats and dispersed
over the web in resources that present different conceptual
schemas.

The W3C standards for a prospective Semantic Web1 pro-
vide a means to tackle that issue: RDF2, SPARQL3 and
OWL4 are increasingly used by the Life Sciences commu-
nity to integrate information (RDF), to query it (SPARQL)
and to encode consensus knowledge about such information
using ontologies (OWL), in the so-called Life Sciences Se-
mantic Web (LSSW).

Biomedical ontologies constitute one of the pillars of the
LSSW, since they offer a computationally processable and
web-oriented representation of agreed-upon domain knowl-
edge. Projects like the Open Biological and Biomedical On-
tologies (OBO) foundry [22] offer free access to curated on-
tologies like the Gene Ontology (GO) [8]. The functions that
biomedical ontologies perform range from intense reasoning
[24] to light vocabularies for Linked Data [20]. In order to
fulfill such functions, biomedical ontologies should be manip-
ulated to fit scientists’ requirements, specially when reusing
already existing ontologies: addition or removal of axioms
and entities, inference in relation to external ontologies, se-
lective materialisation of inferred axioms, and so forth. Ma-
nipulating biomedical ontologies is a laborious task since
they are growing in terms of size [16] and contents, that is,
axiomatical richness [17]. The Ontology Pre Processor Lan-
guage5 (OPPL) offers the possibility of automating ontology
manipulation and hence make it more efficient, powerful and
less error-prone.

OPPL is beneficial but, like other ontology tools, its func-
tionality cannot be exploited within the bioinformatics pro-
cesses themselves. Galaxy, a web server for combining differ-
ent genomics tools in workflows [10], offers the ideal platform
for making OPPL part of bioinformatics analyses. There-
fore, we have developed OPPL-Galaxy, a tool to execute
OPPL scripts from within Galaxy. OPPL-Galaxy enhances
OPPL’s functionality, i.e. automated ontology manipula-
tion, by providing the possibility of directly sending OPPL’s
output, an improved ontology, to other Galaxy tools. By em-
bedding tools like OPPL in genomic science frameworks like

1http://www.w3.org/standards/semanticweb/
2http://www.w3.org/standards/techs/rdf
3http://www.w3.org/standards/techs/sparql
4http://www.w3.org/standards/techs/owl
5http://oppl.sf.net

12

Galaxy the user base of semantic technologies in life sciences
increases, since more sophisticated analyses of biomedical
information can be performed.

This paper describes OPPL-Galaxy: an overview of its de-
sign, implementation and availability is provided in Section
2. Section 3 goes through tested use cases that should be
useful for life scientists. Finally, Section 4 discusses OPPL-
Galaxy’s benefits and foreseen features.

2. OVERVIEW OF OPPL-GALAXY

2.1 OPPL
OPPL offers the possibility of automating the manipu-

lation of ontologies: the OPPL user defines, in an OPPL
script, a series of changes to be performed in a concrete on-
tology when the script is executed. The changes are the
addition or removal of axioms according to criteria defined
by the OPPL user.

OPPL is based on the OPPL syntax, an extension of the
Manchester OWL Syntax (MOS) [11] that includes keywords
like ADD (to add an axiom), REMOVE (to remove an axiom),
SELECT (to select entities) etc. An OPPL script defines an
OWL query and some actions that should be performed
against the retrieved entities (see Section 3.1). A query
can mix variables to be bound by a set of named entities
and actual named entities of the target ontology. There are
three types of OPPL queries: OWL queries that exploit the
automated reasoner, syntactic OWL queries that only work
with the asserted axioms, and queries that use a regular ex-
pression to match annotation values like rdfs:label. The
actions are based on the addition or removal of axioms of
any complexity to/from the entities retrieved by the query.
Once an OPPL script has been defined, the OPPL script
and the ontology that will be changed by it are passed to
the OPPL engine and it changes the ontology according to
the changes described in the OPPL script, generating a new
ontology (Figure 1).

OPPL has already shown its utility: it has been used to
build an ontology transformation service [23] and for apply-
ing Ontology Design Patterns (ODPs) [6, 7, 12, 13]. Also, it
is part of Populous, an application for populating ontologies
from spreadsheets through the use of ODPs [15].

2.2 Galaxy
Galaxy offers an open, web-based platform for performing

genomic analyses. By using Galaxy, different tools can be
combined, ranging from simple data manipulations (e.g. text
parsing) to complex analyses (e.g. statistical analysis of Next-
Generation Sequencing data). Such combinations can be
persistently executed within a single web interface [10]; the
output of a tool can be sent to other tools as input, eas-
ing the construction of workflows based on recurrent tasks.
Those complex analyses can be performed by scientists who
are not necessarily computationally skilled. Moreover, a his-
tory of all performed actions is saved, so analyses can be
reproduced at any time and shared by different users of the
system. Galaxy workflows can be built from the users’ his-
tory and shared by different means, including uploading to
myExperiment [9].

Developing Galaxy tools is straightforward, since only a
tool definition XML file must be created, containing a de-
scription of the tool’s web interface and inputs and outputs.

2.3 OPPL-Galaxy
OPPL can be used through the graphical interface of Pro-

tégé6, as part of Populous, or by writing a Java program.
Despite those possible means of manipulating ontologies with
OPPL, OPPL cannot be used as part of a workflow that
might include other bioinformatics analysis tools (e.g. gene
prediction tools), unless a tailored Java program is written.
OPPL-Galaxy fills that niche by offering a version of OPPL
that can be used in combination with other bioinformatics
Galaxy tools.

In order to create the OPPL-Galaxy tool, an OPPL wrap-
per was developed to act as an interface between Galaxy, the
OPPL 2 API7 and the OWL API8, adding a layer on top
of both APIs to fit in the Galaxy input and output require-
ments (Figure 2).

OPPL-Galaxy takes as inputs a target ontology and an
OPPL script, both uploaded to Galaxy by the user (or pro-
duced as output by another Galaxy tool), and generates a
new ontology that has been changed according to the OPPL
script, by adding or removing axioms. The OPPL-Galaxy
web interface presents the following options (Figure 3):

• Imports (optional): if the input (OWL) ontology im-
ports other ontologies, a flat file that maps the ontol-
ogy URIs to physical URIs must be uploaded to Galaxy
by the user.

• Target ontology: the input ontology that will be mod-
ified by the OPPL script. Since OPPL-Galaxy relies
on the OWL API for loading and saving ontologies, it
can load ontologies in the following formats: OBO flat
file, OWL (RDF/XML, OWL/XML, Functional OWL
Syntax, MOS), turtle, and KRSS.

• OPPL script: a flat file containing the OPPL script
that, when executed, will perform the desired changes
in the target ontology (see Section 3.1). This file may
be created by using the Protégé OPPL plugin via the
OPPL text editor (with autocompletion), the OPPL
script builder, or the OPPL macros tab.

• Output format: the format that the output ontology
should have, OBO or OWL (RDF/XML).

• Add inferred axioms (optional): this option adds the
inferred subsumption axioms to the output ontology
as asserted axioms.

• Choose reasoner: Pellet9, HermiT10 or FaCT++11 can
be used.

• Merge ontologies (optional): if imported ontologies have
been used, they can be merged in a single new ontol-
ogy.

The output ontology can be downloaded from the web
interface so that it could be used outside Galaxy, for example
with Protégé or OBO-Edit12, or reused as input for other
Galaxy tools like ONTO-toolkit [1].
6http://protege.stanford.edu/
7http://sourceforge.net/projects/oppl2/files/OPPL\
%20API/
8http://owlapi.sf.net
9http://clarkparsia.com/pellet/

10http://www.hermit-reasoner.com/
11http://code.google.com/p/factplusplus/
12http://oboedit.org

13

Figure 1: OPPL process, including a toy OPPL script (OPPL syntax simplified for the sake of clarity). The
OPPL engine takes an ontology and an OPPL script as inputs, and performs the changes defined in the OPPL
script in the input ontology, generating a new output ontology. This OPPL script will select any class (?x)
that is a subClassOf part_of some (?y or cell): part_of and cell are actual named entities of the ontology,
and ?y can be any class that fits in the OWL expression. Next, it will remove an axiom and add another one
to the retrieved entities, generating a new ontology containing the new axioms.

Figure 2: OPPL-Galaxy implementation. The circle represents the OPPL wrapper. Galaxy deals with the
data and the parameters that will be passed to the OPPL wrapper. In order to pass, for instance, an ontology
to the OPPL wrapper, the ontology must be first uploaded to Galaxy (or passed to it as the output of another
Galaxy tool). Also, Galaxy deals with the output of the OPPL wrapper: the output can be redirected to
other Galaxy tools or downloaded and saved as an standalone file. The OPPL wrapper coordinates the OPPL
API (to parse the OPPL script and execute it), the OWL API (to load ontologies, make changes and save
ontologies) and the chosen reasoner (to perform inference).

14

Figure 3: OPPL-Galaxy web interface, displayed in the middle. On the left pane, a list of Galaxy tools is
shown; on the right pane, the history of the executed Galaxy tools.

2.4 Requirements and availability
In order to use OPPL-Galaxy, Java and Galaxy13 must be

installed in a UNIX machine (GNU/Linux or Mac OS X),
since OPPL-Galaxy uses standard UNIX redirection. MS
WindowsTM is not officially supported by Galaxy and since
Galaxy is used as a server (except for tool development), it
is recommended that Galaxy be deployed in a UNIX-based
machine.

OPPL-Galaxy can be found at the Galaxy Tool Shed14,
under the ‘Ontology manipulation’ category: the OPPL-
Galaxy bundle includes the software itself (along with third-
party libraries and XML tool file), sample scripts and on-
tologies, and instructions on installation and usage. OPPL-
Galaxy is open source15 and is distributed under the General
Public License16.

A public instance of Galaxy with OPPL-Galaxy installed
is also available17.

3. USING OPPL-GALAXY
The following use cases18 provide some useful examples

of how to use OPPL-Galaxy. More OPPL examples can be
found at the OPPL scripts site19.

3.1 Basic usage
The OPPL-Galaxy bundle includes a simple OPPL script

for testing purposes. It is described as follows to help the
reader understand the rest of the use cases:

1 ?whole:CLASS,
2 ?part:CLASS
3 SELECT

13http://galaxy.psu.edu/
14http://toolshed.g2.bx.psu.edu/
15http://toolshed.g2.bx.psu.edu/repos/
mikel-egana-aranguren/oppl

16http://www.gnu.org/copyleft/gpl.html
17http://sele.inf.um.es:8080/
18http://miuras.inf.um.es/OPPL-Galaxy
19http://oppl2.sourceforge.net/taggedexamples/

4 ?part SubClassOf part_of some ?whole
5 WHERE ?part != Nothing
6 BEGIN
7 ADD ?part SubClassOf part_of only ?whole
8 END;

First, the variables that will be used and their type is de-
clared: ?whole and ?part should be bound by OWL classes
(CLASS). The script queries the reasoner (SELECT clause)
for the classes that are subclasses of part_of some ?whole

(note the use of MOS, SubClassOf part_of some). The re-
trieved classes should be satisfiable (!= Nothing). Then,
the axiom SubClassOf part_of only ?whole will be added
to them. part_of is a named entity in the ontology; ?part
and ?whole are variables defining groups of classes.

3.2 Ontology debugging and evaluation
Ontology debugging can be a daunting activity, specially

if the ontology the scientist is working with has not been
developed in-house and/or if it presents a complex axioma-
tisation over many entities. OPPL-Galaxy can be used for
detecting and fixing certain structures that are considered
bad practices (antipatterns) or at least ‘suspicious’. The
detection of antipatterns also offers a ‘picture’ of the ontol-
ogy: it can be used to evaluate the overall structure of the
ontology as a further element to judge the ontology’s qual-
ity. OPPL-Galaxy offers a means of defining antipatterns as
‘test units’ that can be run against ontologies automatically,
as part of Galaxy workflows.

The notion of antipatterns in ontologies has already been
defined [4, 21]. For example [21] mentions using the OWL
universal restriction (only) without any other restriction like
some on the same property (exclusive universal) as a poten-
tial antipattern. The OWL universal restriction, on its own,
can be trivially satisfied by an empty class, e.g. A subclas-

sof p only (B and C) can be satisfiable even when B dis-

jointWith C, since the semantics of only state that if there
is a relation, it must be to (B and C), or none: (B and C)

is empty and therefore would be the none case.
The exclusive universal structure can be detected in, for

15

example, BioPAX20, by the following OPPL script:

1 ?target:CLASS,
2 ?prop:OBJECTPROPERTY,
3 ?filler:CLASS
4 SELECT ASSERTED ?target SubClassOf ?prop only ?filler
5 WHERE FAIL ?target SubClassOf ?prop some ?filler
6 BEGIN
7 ADD ?target SubClassOf !OnlyBadPracticeResult
8 END;

This script detects the exclusive universal structure and
adds all the classes that present it as subclasses of Only-

BadPracticeResult21, a class created on the fly if it does
not exist in the ontology (! symbol). Note the use of the
ASSERTED keyword (the reasoner is deactivated for query-
ing in order to improve performance) and the FAIL keyword
(negation as failure is used to detect absent existential re-
strictions, something out of the scope of OWL semantics).

More antipatterns can be found in the collection presented
in [4]:

• Logical Antipatterns (LAP): detectable by an auto-
mated reasoner, e.g. unsatisfiable classes.

• Non-Logical Antipatterns (NLAP): modelling errors
that are not detectable by a reasoner, usually due to
a misunderstanding of the language semantics, i.e. the
logical consequences of the statements made.

• Guidelines (G): alternative, simpler axiomatic expres-
sions of the same knowledge.

SynonymeOfEquivalence (SOE) is an example of a NLAP.
Such antipattern describes the situation in which two classes
are declared equivalent and both pertain to the same on-
tology (i.e. they have not been imported). Generally that
means that the developer intends to model a synonym, which
should be an rdfs:label string, as a whole class. Such
structure can be found, for example, in the NIF Gross Anato-
my ontology22, using the following script (it also removes the
structure):

1 ?target:CLASS,
2 ?filler:CLASS
3 SELECT ASSERTED
4 ?target equivalentTo ?filler
5 BEGIN
6 REMOVE ?target equivalentTo ?filler
7 END;

We do not claim that these structures (exclusive universal
in BioPAX and SOE in NIF Gross Anatomy) are erroneous
per se. We rather state that, according to the experience of
the authors of [21], [4] and ours, they are modelling practices
that may yield unexpected results when automated reason-
ing is applied. Therefore, the scientist who is reusing those
ontologies should be aware of the existence of the mentioned
antipatterns. OPPL-Galaxy is an straightforward, powerful

20http://www.biopax.org/release/biopax-level3.owl
21This script detects any case in which a universal restriction
is used in the absence of an existential restriction. Therefore,
it would (wrongly) flag as an instance of the antipattern, for
example, a universal restriction and a exactly restriction
used together. A more thorough script is feasible but out of
the scope of this paper.

22http://ontology.neuinfo.org/NIF/
BiomaterialEntities/NIF-GrossAnatomy.owl

and flexible (any antipattern can be defined by the scientist)
tool to detect such antipatterns en masse, and, even more
useful, as part of automated Galaxy workflows.

3.3 OWL punning
OWL punning is a feature of OWL 2 that makes it pos-

sible for different entities to have the same URI23, acting
as different ‘views’ on the same entity. The entities are dif-
ferentiated by the reasoner using their axiomatic context.
OWL punning can be useful, for example, when adding an
OBO-formatted ontology to a Knowledge Base (KB) that
will be queried using SPARQL. OBO terms are mapped to
OWL by all the existing OBO to OWL mappings as OWL
classes24, but it may be useful to model them also as indi-
viduals, for example for performing more succinct SPARQL
queries (querying directly for triples rather than for the
triple-based serialisation of OWL axioms). Therefore, to
have both classes (for OWL queries) and individuals (for
more ‘comfortable’ SPARQL queries), it makes sense to add,
for every class, an individual with the same URI, i.e. to use
OWL punning in the ontology [14]. The following OPPL
script can be used for such task:

1 ?x:CLASS,
2 ?y:INDIVIDUAL = create(?x.RENDERING)
3 SELECT ?x SubClassOf Thing
4 WHERE ?x != Nothing, ?x != Thing
5 BEGIN
6 ADD ?y Type ?x
7 END;

By applying this script a ‘punned’ ontology can be quickly
obtained: the script adds an individual as a member of each
class, with the same URI as the class (?x.RENDERING), ex-
cept in the case of owl:Thing and owl:Nothing. Thus, an
ontology in which each class has an individual with the same
URI is obtained. Triples from existential restrictions can be
added to the punned ontology executing the following script
(using the punned ontology as input):

1 ?x:CLASS,
2 ?y:INDIVIDUAL,
3 ?z:CLASS,
4 ?w:INDIVIDUAL,
5 ?p:OBJECTPROPERTY
6 SELECT ASSERTED ?x SubClassOf ?p some ?z,
7 ASSERTED ?y Type ?x, ASSERTED ?w Type ?z
8 WHERE ?x != Nothing, ?x != Thing
9 BEGIN
10 ADD ?y ?p ?w
11 END;

This script will only work for existential restrictions, i.e. it
will not transform universal restrictions to triples. There-
fore, it will completely transform an ontology that only presents
existential restrictions, like GO. By using these scripts se-
quentially in a Galaxy workflow a ready-to-use (OWL) RDF
representation of an OBO-formatted ontology is obtained.

3.4 Ontology refactoring
It is often necessary to refactor (i.e. change) an axiomatic

representation for another one to improve, for instance, query-
ing, maintenance, or inference in a given ontology. Such a

23http://www.w3.org/TR/owl2-new-features/#F12:
_Punning

24http://berkeleybop.org/~cjm/obo2owl/obo-syntax.
html

16

refactoring can be regarded as an application of ODPs [2].
For example, the following script, taken from [23], trans-
forms an ontology that follows the Entity-Property-Quality
ODP25 into an ontology that presents the Entity-Feature-
Value ODP26 [6]:

1 ?x:CLASS,
2 ?y:OBJECTPROPERTY = MATCH("has((\w+))"),
3 ?z:CLASS,
4 ?feature:CLASS = create(?y.GROUPS(1))
5 SELECT ASSERTED ?x subClassOf ?y some ?z
6 BEGIN
7 REMOVE ?x subClassOf ?y some ?z,
8 ADD ?x subClassOf !hasFeature some
9 (?feature and !hasValue some ?z)
10 END;

This script retrieves any object property whose URI frag-
ment matches the regular expression defined in line 2. It
then creates a class using the first group of the matched
string (?y.GROUPS(1)) and refactors any existing relation,
creating the hasFeature object property (!hasFeature).

This script changes the ontology at the points that match
the query. OPPL can be used to expand complex modelling
that has been encapsulated in one script to different parts
of the ontology, a process that, if performed manually, is
error-prone. By using OPPL-Galaxy, the complex modelling
encapsulated in the script can be applied (parameterised
with the actual named entities of the ontology), for example,
every time an ontology is updated, to ensure that the desired
representation is used for analysing biomedical information.

3.5 OPPL-Galaxy as part of Galaxy workflows
OPPL-Galaxy can be combined with other Galaxy tools to

build complex workflows like the one shown in Figure 4. The
workflow can be used by a scientist interested in proteins
that act on GO biological processes involving Hepatocytes
that are not localisation processes. The workflow executes
two OPPL scripts, an ONTO-toolkit function (get parents),
and the Galaxy default tool for comparing two datasets.
Thus, it combines three Galaxy tools to retrieve exactly the
proteins that the scientist is interested in.

The first OPPL script makes all the siblings of localisation
(GO_0051179) disjoint to it:

1 ?localisation_sibling:CLASS
2 SELECT
3 ASSERTED ?localisation_sibling SubClassOf GO_0008150
4 WHERE ?localisation_sibling != GO_0051179
5 BEGIN
6 ADD ?localisation_sibling DisjointWith GO_0051179
7 END;

The second OPPL script gets the output of the first OPPL
script (a new version of GO with more disjoint axioms) and
queries the resulting ontology for the biological processes
that have ‘Hepatocyte’ as part of their names and are related
via part_of or regulates to a biological process that is not
localisation. It adds the relation actsOn to every resulting
class.

1 ?hepatocyte_process:CLASS,

25http://www.gong.manchester.ac.uk/odp/html/Entity_
Property_Quality.html

26http://www.gong.manchester.ac.uk/odp/html/Entity_
Feature_Value.html

2 ?hepatocyte_process_label:CONSTANT
3 = MATCH(".?hepatocyte.+"),
4 ?has_part_hepatocyte_process:CLASS,
5 ?part_of_or_regulates:OBJECTPROPERTY
6 SELECT
7 ASSERTED ?hepatocyte_process.IRI
8 label ?hepatocyte_process_label, ?hepatocyte_process
9 subClassOf ?part_of_or_regulates some
10 (?has_part_hepatocyte_process and not GO_0051179)
11 WHERE ?hepatocyte_process != GO_0008150
12 BEGIN
13 ADD ?hepatocyte_process subClassOf !actsOn some
14 ?has_part_hepatocyte_process
15 END;

The resulting ontology is processed by ONTO-toolkit to
get the parents of a term27, specially the ones through the
relationship actsOn, to obtain the processes in which the
scientist is interested. Then, the Galaxy tool for comparing
two datasets is used to extract the proteins involved in the
resulting processes of interest, using the GO parent terms
as keys against a Gene Ontology Annotation (GOA) file [3].

This workflow shows some of the advantages provided by
OPPL-Galaxy:

• Applying disjoint axioms, by executing a script on the
fly, each time GO is updated. In this case disjoint ax-
ioms involving only a concrete class have been used in
order to make the workflow faster. OPPL variables can
be used to make the whole GO sibling-wise disjoint.

• Mixing text processing (in this case the regular expres-
sion (".?hepatocyte.+")) and automated reasoning
(in this case: subClassOf transitivity, subPropertyOf,
disjointFrom, and part_of transitivity) in the same
query.

• Referring to groups of entities via variables: part_of

and regulates are represented by the same variable
?part_of_or_regulates, including the subproperties
negatively_regulates and positively_regulates due
to OWL semantics.

These advantages are enhanced by the fact that OPPL is
used within Galaxy: the process can be repeated with any
new version of GO, it can be shared with other scientists,
combined with other tools (in this case manipulation of GOA
files), and modified or ran in parallel.

4. DISCUSSION AND CONCLUSIONS
The success of the application of the Semantic Web tech-

nologies in Life Sciences not only relies on building ontolo-
gies and fine tuning current standards but also on creating
tools that can be exploited as part of frequently-used data
analysis environments such as Galaxy. Galaxy facilitates the
combination of several bioinformatics tools (sequence analy-
sis, phylogenetics tools, etc.) in a single web interface. Since
OPPL-Galaxy can be used as part of the Galaxy framework
as an ontology manipulation tool, it can be exploited in com-
bination with other Galaxy tools.

27In this case GO_0048175 is used for querying to illustrate the
workflow in a simple way, making the first script redundant.
A further OPPL script and ONTO-toolkit function should
be used to retrieve all the modified (actsOn added) classes,
to make the whole process more abstract, without the need
for a query including a concrete class.

17

Figure 4: OPPL-Galaxy workflow for exploiting an enriched version of GO against GOA files. This workflow
also involves ONTO-toolkit and the Galaxy default tool for data analysis.

That is, precisely, what sets OPPL-Galaxy apart from
other ontology tools that offer similar functionality: it can
be used with the actual data and tools that life scientists
use in a daily basis, instead of in isolation. To the best
of our knowledge, there is no Galaxy tool comparable to
OPPL-Galaxy except ONTO-toolkit. However, they offer
very different functionalities that do not overlap and in fact
can be combined to obtain meaningful results, as described
in the workflow of Section 3.5.

The OPPL syntax extends the OWL syntax with intu-
itive keywords, and therefore it is not difficult to learn for
a user minimally fluent in OWL. That means that OPPL-
Galaxy offers a powerful and familiar tool for automating
ontology curation processes that otherwise would need con-
siderable human resources and produce incomplete results.
The OPPL scripts described in Section 3 are relatively sim-
ple, yet they add benefits to ontology development and ex-
ploitation like debugging, refactoring and axiomatic enrich-
ment via ODPs. Specially in the case of ODPs, a well-known
ontology engineering practice, OPPL-Galaxy offers the ideal
setting for their application, since such ODPs can be shared
as ready to execute Galaxy workflows, saving time and ef-
fort. More complex OPPL scripts would undoubtedly yield
even greater benefit, particularly if combined in workflows
(e.g. debugging and refactoring sequentially and sending the
output to other Galaxy tools).

An example of a Galaxy workflow that combines different
OPPL scripts with other Galaxy tools is provided in Section
3.5. Such a workflow is simple for the sake of clarity, but it
shows what can be achieved with OPPL-Galaxy. More so-
phisticated analyses can be performed in workflows exploit-
ing OPPL-Galaxy, like more fine-grained axiomatic enrich-
ment of biomedical ontologies [5, 7, 18, 19] or the application
of the method described in [1] for extraction of modules from
biomedical ontologies, but, in the case of OPPL-Galaxy, ad-
ditionally applying inference. The diversity and function-
ality of Galaxy workflows involving OPPL-Galaxy depends
only on the user.

In summary, OPPL-Galaxy offers the possibility of au-

tomating ontology manipulations in a reproducible, persis-
tent and shareable fashion, in a context in which the result
of such manipulations can be directly sent to further tools
in order to build powerful workflows. Therefore, OPPL-
Galaxy could, on the one hand, be of interest for ontologists
that maintain ontologies and, on the other hand, for life
scientists that exploit ontologies to analyse biomedical in-
formation.

OPPL-Galaxy is a seminal prototype that is continuously
improved. Foreseen features include a support for OWLLink28

and, in the case of adding inferred axioms to the output on-
tology as asserted axioms, the possibility of choosing other
axioms apart from subsumption between named classes (e-
quivalence axioms, type axioms, etc.). Performance can be
an issue while working with OPPL-Galaxy, since performing
inferences on biomedical ontologies is resource demanding,
even considering that OPPL-Galaxy will normally work in
a server with considerable memory. Such performance de-
pends on automated reasoners, and it is expected to increase
in the future, as reasoners become more efficient.

5. ACKNOWLEDGEMENTS
MEA is funded by the Marie Curie Cofund programme

(FP7). JTFB is funded by the Spanish Ministry of Science
and Innovation (TIN2010-21388-C02-02).

6. REFERENCES
[1] E. Antezana, A. Venkatesan, C. Mungall, V. Mironov,

and M. Kuiper. ONTO-ToolKit: enabling bio-ontology
engineering via galaxy. BMC bioinformatics, (Suppl
12):S8+, 2010.

[2] M. E. Aranguren, E. Antezana, M. Kuiper, and
R. Stevens. Ontology Design Patterns for
bio-ontologies: a case study on the Cell Cycle
Ontology. BMC bioinformatics, 9(Suppl 5):S1, 2008.

[3] E. Camon, M. Magrane, D. Barrell, V. Lee,
E. Dimmer, J. Maslen, D. Binns, N. Harte, R. Lopez,

28http://www.owllink.org/

18

and R. Apweiler. The Gene Ontology Annotation
(GOA) Database: sharing knowledge in Uniprot with
Gene Ontology. Nucleic Acids Res, 32:D262–D266,
Jan 2004.

[4] O. Corcho, C. Roussey, L. M. Vilches Blázquez, and
I. Pérez. Pattern-based OWL Ontology Debugging
Guidelines. In F. S. V. S. Eva Blomqvist,
Kurt Sandkuhl, editor, WOP, ISWC, pages 68–82,
2009.

[5] A. D. Diehl, A. D. Augustine, J. A. Blake, L. G.
Cowell, E. S. Gold, T. A. Gondré-Lewis, A. M. Masci,
T. F. Meehan, P. A. Morel, A. Nijnik, B. Peters,
B. Pulendran, R. H. Scheuermann, Q. A. Yao, M. S.
Zand, and C. J. Mungall. Hematopoietic cell types:
Prototype for a revised cell ontology. Journal of
Biomedical Informatics, 44(1):75 – 79, 2011.

[6] M. Egaña, A. Rector, R. Stevens, and E. Antezana.
Applying Ontology Design Patterns in Bio-ontologies.
In A. Gangemi and J. Euzenat, editors, EKAW 2008,
LNCS 5268, pages 7–16, 2008.

[7] J. T. Fernandez-Breis, L. Iannone, I. Palmisano, A. L.
Rector, and R. Stevens. Enriching the Gene Ontology
via the dissection of labels using the Ontology Pre
Processor Language. In EKAW, pages 59–73, 2010.

[8] Gene Ontology Consortium. Gene Ontology: tool for
the unification of biology. Nature Genetics,
23(May):25–29, 2000.

[9] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank,
D. Michaelides, D. Newman, M. Borkum,
S. Bechhofer, M. Roos, P. Li, and D. De Roure.
myExperiment: a repository and social network for
the sharing of bioinformatics workflows. Nucleic Acids
Research, 38(suppl 2):W677–W682, 2010.

[10] J. Goecks, A. Nekrutenko, J. Taylor, and Galaxy
Team. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome
biology, 11(8):R86+, 2010.

[11] M. Horridge, N. Drummond, J. Goodwin, A. L.
Rector, R. Stevens, and H. Wang. The Manchester
OWL Syntax. In B. C. Grau, P. Hitzler, C. Shankey,
E. Wallace, B. C. Grau, P. Hitzler, C. Shankey, and
E. Wallace, editors, OWLED, volume 216 of CEUR
Workshop Proceedings, 2006.

[12] L. Iannone, I. Palmisano, A. L. Rector, and
R. Stevens. Assessing the safety of knowledge patterns
in owl ontologies. In ESWC, pages 137–151, 2010.

[13] L. Iannone, A. Rector, and R. Stevens. Embedding
Knowledge Patterns into OWL. In ESWC, pages
218–232, 2009.

[14] J.A. Miñarro-Gimenez, M. Egaña Aranguren, R. M.
Béjar, J. T. Fernández-Breis, and M. Madrid.
Semantic integration of information about orthologs
and diseases: The OGO system. Journal of biomedical
informatics, in press.

[15] S. Jupp, M. Horridge, L. Iannone, J. Klein, S. Owen,
J. Schanstra, R. Stevens, and K. Wolstencroft.
Populous: A tool for populating ontology templates.
Journal of biomedical semantics, in press.

[16] J. W. Kim, J. C. Caralt, and J. K. Hilliard. Pruning
bio-ontologies. Hawaii International Conference on
System Sciences, 0:196c, 2007.

[17] A. Masci, C. Arighi, A. Diehl, A. Lieberman,
C. Mungall, R. Scheuermann, B. Smith, and
L. Cowell. An improved ontological representation of
dendritic cells as a paradigm for all cell types. BMC
Bioinformatics, 10:70+, 2009.

[18] Mikel Egaña Aranguren, C. Wroe, C. Goble, and
R. Stevens. In situ migration of handcrafted ontologies
to reason-able forms. Data and Knowledge
Engineering, 66(1):147–162, 2008.

[19] E. Mikroyannidi, A. Rector, and R. Stevens.
Abstracting and Generalising the Foundational Model
Anatomy (FMA) Ontology. In Bio-Ontologies, 2009.

[20] M.-A. Nolin, M. Dumontier, F. Belleau, and
J. Corbeil. Building an HIV data mashup using
Bio2RDF. Briefings in Bioinformatics, 2011.

[21] A. Rector, N. Drummond, M. Horridge, J. Rogers,
H. Knublauch, R. Stevens, H. Wang, and C. Wroe.
OWL pizzas: Practical experience of teaching
OWL-DL: Common errors and common patterns. In
E. Motta, N. Shadbolt, A. Stutt, and N. Gibbins,
editors, Engineering Knowledge in the Age of the
SemanticWeb, volume LNAI 3257, pages 63–81, 2004.

[22] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug,
W. Ceusters, L. J. Goldberg, K. Eilbeck, A. Ireland,
C. J. Mungall, N. Leontis, P. Rocca-Serra,
A. Ruttenberg, S.-A. Sansone, R. H. Scheuermann,
N. Shah, P. L. Whetzel, and S. Lewis. The OBO
Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nat Biotech,
25(11):1251–1255, 2007.

[23] O. Šváb Zamazal, V. Svátek, and L. Iannone.
Pattern-based ontology transformation service
exploiting oppl and owl-api. In EKAW’10, pages
105–119, 2010.

[24] K. Wolstencroft, R. Mcentire, R. Stevens,
L. Tabernero, and A. Brass. Constructing
ontology-driven protein family databases.
Bioinformatics, 21(8):1685–1692, 2005.

19

